Luptáková J., Milovská S., Jeleň S., Mikuš T., Milovský R. & Biroň A., 2016: Primary Cu ore mineralization at the Ľubietová-Podlipa locality (Slovakia). Acta Geologica Slovaca, 8, 2, 175–194.
Primary Cu ore mineralization at the Ľubietová-Podlipa locality (Slovakia)
Jarmila Luptáková1, Stanislava Milovská1, Stanislav Jeleň1,2, Tomáš Mikuš1, Rastislav Milovský1 & Adrian Biroň1
1Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia; luptak@savbb.sk, milovska@savbb.sk, jelen@savbb.sk, mikus@savbb.sk, milovsky@savbb.sk, biron@savbb.sk
2Department of Geography and Geology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Abstract
The results of mineralogical and geochemical research of primary mineralization at the Ľubietová-Podlipa deposit dumps are presented in the article. Chalcopyrite and tennantite are the most abundant sulphides in studied samples. Cobaltite-gersdorffite, pyrite, siegenite, and cassiterite are quite common, yet volumetrically negligible, in contrast to tetrahedrite, kupčíkite, matildite(?), cinnabar, unidentified Ag-S and native gold, which are very scarce. Gangue minerals are quartz (probably two generations) with fewer amounts of carbonates. Dark quartz is often hosting irregular nests of sulphide minerals, usually on outer boundaries of the veins. Both generations of vein quartz show similar microstructures of low-temperature ductile deformation. Carbonates include members of dolomite-ankerite series, siderite, and calcite containing variable amounts of Fe and Mn. Isotopic composition of δ34S in chalcopyrite and tennantite vary between 6.69 and 9.77 ‰. These values may be very close to the composition of H2S in fluid, which is tentatively attributed to a deep source derived from metamorphic rocks. Influence of compositional variability of tetrahedrite-tennantite series and carbonates on Raman shift of selected vibration bands is also a subject of this study.
Key words: Ľubietová - Podlipa, Cu-mineralization, cobaltite, gersdorffite, kupčíkite, carbonates
Manuscript received: 2016-09-12
Revised version accepted: 2016-12-13




Information
Forthcoming articles
AGEOS 2025, Vol. 17, Issue 1
- Krčmář D., Hodasová K., Zatlakovič M. & Ondrejková I.: Thermal characterisation of groundwater systems in heterogeneous alluvial sediments: Insights from field tests in Hronsek (Slovakia)
- Mojzeš A., Nogová E., Ondrášová L. & Marko F.: Uranium occurrences as landfill residuum after closed mining in the Kravany area (Kozie chrbty Mountains, Western Carpathians, Slovakia)
- Ortuta J., Nogová E., Ondrášová L. & Marko F.: Uranium occurrences as landfill residuum after closed mining in the Kravany area (Kozie chrbty Mountains, Western Carpathians, Slovakia)
- Majzlan J., Števko M., Chovan M., Milovská S., Jeleň S., Mikuš T. & Biroň A.: Iron and manganese oxides from the oxidation zone of the Ľubietová-Podlipa deposit
Archive
- AGEOS 2025, Vol. 17, Issue 1
- AGEOS 2024, Vol. 16, Issue 2
- AGEOS 2024, Vol. 16, Issue 1
- AGEOS 2023, Vol. 15, Issue 2
- AGEOS 2023, Vol. 15, Issue 1
- AGEOS 2022, Vol. 14, Issue 2
- AGEOS 2022, Vol. 14, Issue 1
- AGEOS 2021, Vol. 13, Issue 2
- AGEOS 2021, Vol. 13, Issue 1
- AGEOS 2020, Vol. 12, Issue 2
- AGEOS 2020, Vol. 12, Issue 1
- AGEOS 2019, Vol. 11, Issue 2
- AGEOS 2019, Vol. 11, Issue 1
- AGEOS 2018, Vol. 10, Issue 2
- AGEOS 2018, Vol. 10, Issue 1
- AGEOS 2017, Vol. 9, Issue 2
- AGEOS 2017, Vol. 9, Issue 1
- AGEOS 2016, Vol. 8, Issue 2
- AGEOS 2016, Vol. 8, Issue 1
- AGEOS 2015, Vol. 7, Issue 2
- AGEOS 2015, Vol. 7, Issue 1
- AGEOS 2014, Vol. 6, Issue 2
- AGEOS 2014, Vol. 6, Issue 1
- AGEOS 2013, Vol. 5, Issue 2
- AGEOS 2013, Vol. 5, Issue 1
- AGEOS 2012, monograph
- AGEOS 2012, Vol. 4, Issue 2
- AGEOS 2012, Vol. 4, Issue 1
- AGEOS 2011, Vol. 3, Issue 2
- AGEOS 2011, Vol. 3, Issue 1
- AGEOS 2010, Vol. 2, Issue 2
- AGEOS 2010, Vol. 2, Issue 1
- AGEOS 2009, Vol. 1, Issue 2
- AGEOS 2009, Vol. 1, Issue 1