Putiška R., Brixová B., Bednarik M., Tornyai R., Dostál I. & Budinský V., 2021: Shallow geophysical survey as a tool for compactness verification of the underground sealing wall. Acta Geologica Slovaca, 13, 2, 199–204.
Shallow geophysical survey as a tool for compactness verification of the underground sealing wall
René Putiška1, Bibiana Brixová1, Martin Bednarik1, Rudolf Tornyai1, Ivan Dostál2 & Vladimír Budinský3
1Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; rene.putiska@uniba.sk
2AEGEO Ltd., Karpatské námestie 10A, 831 06 Bratislava, Slovakia
3Institute of Geosciences, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
Abstract
he aim of this paper is to assess the compactness of the underground sealing wall through selected geophysical methods as a part of the engineering geological research. Underground wall was realised by grouting concrete mixture through series of two parallel lines of grouting boreholes. The injected environment is represented by the Quaternary sediments, mainly by anthropogenic sediments and soils - weathered rock material of silt composition, clayey sand to clayey gravel with rock fragments up to 10 cm in size, and remains of concrete wall at a depth of 0.3–1 m. Under anthropogenic sediments, granite subsoil rocks were to be interposed by grouting boreholes. Electrical resistivity tomography (ERT), shallow seismic measurements (SRT), and georadar (GPR) were used to verify the compactness of the underground wall. Measurements were made on one profile of a total length of 94 m in the middle between individual grouting boreholes. The measurement results were confronted with geological documentation of boreholes. On one of the boreholes, an electrical resistivity measurement was made on the core sample, which showed that values up to 100 ohm.m represent an injection-free environment and the presence of the injection mixture is displayed by an increase in apparent electrical resistivity. The results of the ERT on the measured profile showed that the individual grouting boreholes behave discreetly, and neither in the vertical nor in the horizontal direction doesn’t form the pre-injected continuous homogeneous layer. Under the groundwater level, the injection mixture did not appear in the electrical resistivity tomography. The mixture was probably washed away in the groundwater flow. The building object was evaluated as non-compact in both horizontal and vertical directions. This result was confirmed also by borehole cores sampling and hydrodynamic testing in boreholes on the assessed section of the staunching wall.
Key words: geophysical methods, ERT, GPR, SRT, underground sealing wall, flood protection line, Danube River
Manuscript received: 2021-11-24
Revised version accepted: 2021-12-14
Information
Forthcoming articles
AGEOS 2024, Vol. 16, Issue 1
- Hoppanová E., Ferenc Š, Mikuš T., Dolníček Z., Kopáčik R., Vlasáč J. & Šimonová V.: Hydrothermal quartz-baryte veins containing Pb-Cu-Sb-(Bi) mineralization at Brusno-Brzáčka occurrence (Veporic Unit, Central Slovakia) and their supergene alteration
- Vojtko R. & Kriváňová K.: Cretaceous collision and thrusting of the Veporic Unit onto Tatric Unit in the Nízke Tatry Mts. revealed from structural analysis
- Aherwar K., Šujan M., Chyba A., Rózsová B. & Aster Team: Authigenic 10Be/9Be dating of the Horná Štubňa river terrace points to the inception of the terrace staircase formation in the Turiec Basin (Slovakia) from the Middle Pleistocene transition
- Krčmář D., Hodasová K., Ondrejková I. & Fľaková R.: Impact of clogging layer disruption on riverbed sediment permeability: An experimental study on the Torysa River, eastern Slovakia
- Aubrecht R. & Bačík P.: Palaeokarst with bauxite filling near Čoltovo (Slovak Karst)
Archive
- AGEOS 2023, Vol. 15, Issue 2
- AGEOS 2023, Vol. 15, Issue 1
- AGEOS 2022, Vol. 14, Issue 2
- AGEOS 2022, Vol. 14, Issue 1
- AGEOS 2021, Vol. 13, Issue 2
- AGEOS 2021, Vol. 13, Issue 1
- AGEOS 2020, Vol. 12, Issue 2
- AGEOS 2020, Vol. 12, Issue 1
- AGEOS 2019, Vol. 11, Issue 2
- AGEOS 2019, Vol. 11, Issue 1
- AGEOS 2018, Vol. 10, Issue 2
- AGEOS 2018, Vol. 10, Issue 1
- AGEOS 2017, Vol. 9, Issue 2
- AGEOS 2017, Vol. 9, Issue 1
- AGEOS 2016, Vol. 8, Issue 2
- AGEOS 2016, Vol. 8, Issue 1
- AGEOS 2015, Vol. 7, Issue 2
- AGEOS 2015, Vol. 7, Issue 1
- AGEOS 2014, Vol. 6, Issue 2
- AGEOS 2014, Vol. 6, Issue 1
- AGEOS 2013, Vol. 5, Issue 2
- AGEOS 2013, Vol. 5, Issue 1
- AGEOS 2012, monograph
- AGEOS 2012, Vol. 4, Issue 2
- AGEOS 2012, Vol. 4, Issue 1
- AGEOS 2011, Vol. 3, Issue 2
- AGEOS 2011, Vol. 3, Issue 1
- AGEOS 2010, Vol. 2, Issue 2
- AGEOS 2010, Vol. 2, Issue 1
- AGEOS 2009, Vol. 1, Issue 2
- AGEOS 2009, Vol. 1, Issue 1