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1. IntroductIon

River terraces serve as a vital archive for understanding ter-
rain evolution, forming in response to base level and climate 
changes, apart from possible anthropogenic forcing (Starkel 
et al., 2007; Vandenberghe, 2008; Gibbard & Lewin, 2009; 
Necea et al., 2013; Olszak & Adamiec, 2016; Olszak, 2017; 
Tlapáková et al., 2021). Chronostratigraphic models of river 
terrace depositional archives enable precise reconstruction of 
uplift/incision histories in terrestrial environments (e.g., Star-
kel et al., 2007; Kováč et al., 2011; Viveen et al., 2012; Necea et 
al., 2013; Šujan & Rybár, 2014; Olszak & Adamiec, 2016; Novák 
et al., 2017; Olszak, 2017; Schumacher et al., 2018; Vitovič 
& Minár, 2018; Olszak et al., 2019; Olszak & Alexanderson, 
2020; Ruszkiczay-Rüdiger et al., 2020; Tlapáková et al., 2021; 
Sládek et al., 2022; Šujan et al., 2023c). Consequently, fluvial 
terraces represent a prime focus for integrated geomorphologi-
cal and geochronological investigations. However, some dating 
techniques, such as radiocarbon or luminescence dating, have 
limited applicability to narrow time ranges, prompting the 
utilization of new methods. Authigenic 10Be/9Be dating stands 
out as one such radiometric dating tool, thanks to its theoretical 
range of up to 14 Ma (e.g., Bourlès et al., 1989; Lebatard et al., 
2008; Šujan et al., 2016).

The current state of knowledge of incision rates based on river 
terrace depositional archives in the Western Carpathians (WC) 
mostly originates from its northern periphery, from the ter-
race systems formed above the Paleogene nappes of the Outer 
WC flysch zone. The specific rates determined here range from 
~ 0.15–0.30 mm·a–1 (Starkel et al., 2007), ~ 0.5 mm·a–1 (Olszak 
& Alexanderson, 2020), ~ 0.6 mm·a–1 (Olszak & Adamiec, 2016) 
and ~ 0.25–1.10 mm·a–1 Olszak et al. (2019). The Žiar Basin in 
the Central WC experienced an incision rate of < 0.12 mm·a–1, 
based on a single OSL age of Sládek et al. (2022). A much more 
pronounced base-level fall of ~ 0.8–1.0 mm·a–1 in the eastern 
Central WC was attributed to the offset of the Vikartovce fault 
(Vojtko et al., 2011). The western periphery of the WC exhib-
its relatively low incision rates of ~ 0.2 mm·a–1 (Novák et al., 
2017; Tlapáková et al., 2021). When it comes to transitioning 
towards the Neogene basins southwards the WC, the incision 
rates are even lower, reaching < 0.08 mm·a–1 in the Vienna Basin 
(Braumann et al., 2019), ~ 0.04 mm·a–1 in the eastern Danu be 
Basin (Šujan et al., 2023c), and long-term stable incision rates of 
~ 0.05 mm·a–1 supported by the extensive river terrace archive 
of the Transdanubian Range (Ruszkiczay-Rüdiger et al., 2018, 
2020). The Eastern Alps were subject to similar, low-intensity in-
cision rates of ~ 0.06–0.2 mm·a–1 during the last few million years 
(Wagner et al., 2010, 2011; Legrain et al., 2014; Häuselmann et 
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al., 2020). On the other hand, the Southern Carpathians exhibit 
incision rates in the order of ~ 0.5–1.0 mm·a–1 (Necea et al., 2005, 
2013), similar to the Outer WC and in contrast to the internal 
zones of the WC mountain range. To sum up, there is a clear 
blind spot between the well-established incision rate models 
from the Outer WC and the Pannonian Basin System on the 
south, or towards the western WC periphery.

This study presents a series of authigenic 10Be/9Be ages ob-
tained from a terrace located near the village of Horná Štubňa 
in the southern part of the Turiec Basin, which is bordered by 
the mountain horsts of the WC (Slovakia) (Kováč et al., 2011; 
Sládek et al., 2022). The dating aims to contribute to the issue 
of river terrace chronostratigraphy and incision rate determina-
tion, which is poorly investigated in the Central WC. The river 
terrace base is situated approximately 24–30 m above the local 
erosional base, represented by the channels of the present-day 
river network. Assuming an age range of ~ 370–220 ka of the 
Veľký Čepčín site (Holec & Braucher, 2014), situated just 6 me-
ters above the Turiec River (the primary stream in the basin 
catchment), the anticipated age of the Horná Štubňa terrace 
exceeds 500 ka, as estimated by Kováč et al. (2011). This con-
text underscores the preference for cosmogenic nuclide dating 
methods to date the river terrace fluvial deposit (Dunai, 2010), 
thus motivating the objective of the present study to date the 
fluvial terrace sediments.

2. GeoloGIcal settInGs

The Western Carpathian orogen, situated within the Alpine-
Carpathian mountain chain (Fig. 1A,B), attained its present 
configuration during the Cretaceous-Miocene Alpine orogenesis. 
This was a complex and protracted process, propelled by the 
subduction of oceanic crust beneath the advancing orogenic 
wedge and the northeastward escape of the Alpine-Carpathian-
Pannonian microplate toward an embayment of the North Euro-
pean Platform. The paleo-Alpine orogeny resulted in the stacking 
of thick-skinned nappe of the Tatric Unit, comprising crystalline 
basement and its late Paleozoic and Mesozoic cover sequences, 
along with the overlying thin skinned Fatric and Hronic nappes 
primarily composed of Mesozoic carbonate rocks. These units, 
along with remnants of the Central Carpathian Paleogene Ba-
sin, primarily located beneath the basin fill, form the basement 
and encircling mountains of the Turiec Basin (Hók et al., 2014; 
Králiková et al., 2014; Kováč et al., 2016; Plašienka, 2018).

The major subsidence of the Turiec Basin commenced in the 
Middle Miocene (Hók et al., 1998; Kováč et al., 2011), character-
ized by significant volcanic activity along its southern margin 
originating from the Kremnické vrchy Mts. (Fig. 1C), which 
are part of the Central Slovakia Volcanic Field (Konečný et al., 
1995; Lexa et al., 2010). During the Late Miocene, the basin ac-
cumulated sediments reaching up to 1250 m (Fig. 1C), largely 
attributed to the presence of Lake Turiec and its regression ca. 
7 Ma (Kováč et al., 2011; Pipík et al., 2012; Šujan et al., 2023b). 
The disappearance of the lake resulted from the onset of uplift 
in the surrounding mountain horsts, eventually establishing 
the current morphotectonic framework. This phase of uplift is 

anticipated to disrupt the planation surface (Šujan et al., 2023b), 
previously formed during a period of relative tectonic stability 
(Minár et al., 2011), and led to the distinct basin-and-range struc-
ture observed in the Western Carpathians (Nemčok & Lexa, 
1990; Kováč & Hók, 1993).

Some base-level oscillations are discernible through the pres-
ence of the Pliocene Bystrička Formation and the Pleistocene 
Podstráne and Diviaky Formations, all originating from alluvial 
and alluvial fan processes (sensu Blikra & Nemec, 1998; Plink-
Björklund, 2021). However, accommodation rates diminished 
following the disappearance of Lake Turiec. A general decline 
in base level, driven by neotectonic dome-like uplift, resulted 
in the partial denudation of Miocene deposits and erosional 
contact with younger strata (Kováč et al., 2011; Minár et al., 
2011). A more comprehensive understanding of the Pleistocene 
evolution of the basin is impeded by a lack of radiometric dating 
of Pleistocene sediments, with the Veľký Čepčín alluvial fan ac-
cumulation, dated to ~ 370–220 ka, serving as the sole tie-point 
(Holec & Braucher, 2014).

The Horná Štubňa river terrace, the focus of this study, is 
located in the southeastern part of the Turiec Basin (Fig. 1D). 
Its age was previously estimated to be ~ 500 ka, primarily based 
on its geomorphological position as the highest level of the local 
terrace staircase (Kováč et al., 2011). The terrace is exposed in a 
small quarry near a landfill (Fig. 2), occasionally excavated for 
sandy and gravelly material, which likely served for local con-
struction purposes. The landfill is present within a gully, which 
enters a narrow floodplain of the Mútnik stream (Fig. 2). The base 
of the terrace, represented by the erosional surface underlying the 
river terrace accumulation, lies at an elevation of 559.5 m a.s.l. 
and reaches a height of ~ 4 m. The nearest section of the Turiec 
River channel (in terms of aerial distance), the major stream 
draining the basin, is located at an elevation of 529.5 m a.s.l., 
while its tributary (Mútnik), located near the outcrop (Fig. 2), 
has a channel at an elevation of 535.5 m a.s.l. Hence, the erosional 
base of the Horná Štubňa river terrace appears 24–30 m above 
the present-day river network erosional base.

3. Methods

3.1. Field research and stratigraphy

The investigated outcrop is situated within an intermittently 
excavated small quarry, featuring approximately a ~ 4.5-meter 
high subvertical outcrop wall. Documentation of the outcrop 
involved standard facies analysis and vertical profile logging 
(Stow, 2005). The broader stratigraphic context of the area was 
examined through lithological logs obtained from boreholes 
archived in the Geofond digital repository of the State Geological 
Institute of Dionýz Štúr in Bratislava, Slovakia. The logs were 
compiled in a generalized stratigraphic section. Specifically, the 
well profile HV-1 can be found in the report by Tužinský et al. 
(1967), GHŠ-1 is documented in Gašparik (1972), MS-1, MS-2, 
and MS-3 were conducted by Šujan & Dzúrik (1996) and the 
borehole profiles of V-5 and V-6 are included in Šustek (2001). 
All mentioned reports are available online at https://da.geology.
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Fig. 1. Location of the Carpathian-Pannonian region in Europe (A) and the Turiec Basin in the Western Carpathian orogen (B). (C) Thickness of the Miocene to 

Quaternary successions of the Turiec Basin. (D) Geological map of the surroundings of the Horná Štubňa river terrace, analyzed in this study (modified from 

Gašparik & Halouzka, 1993). (A), (B) and (C) are modified from Šujan et al. (2024).
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sk/navigator/?desktop=Public. Setting up an account is neces-
sary for access.

3.2. authigenic 10Be/9Be dating

The infrequent usage of the authigenic 10Be/9Be dating stems 
from its complexity, which arises from the distinct sources of 
the two isotopes. Radioactive 10Be is generated in the atmos-
phere through the interaction of cosmic rays with oxygen and 
nitrogen, whereas 9Be originates from the chemical weathering 
of rocks (Raisbeck et al., 1981; Measures & Edmond, 1983; 
Brown et al., 1992). Both isotopes become incorporated into the 
authigenic phase, primarily composed of iron and manganese 
oxyhydroxides that form around the surface of sediment particles 
dispersed in a water column (Bourlès et al., 1989; Willenbring 
& von Blanckenburg, 2010; Wittmann et al., 2012; Singleton et 
al., 2017). Consequently, when these two isotopes converge in a 
water column, their initial ratio becomes influenced by various 
factors such as the petrography of the source area, denudation 
rate, and precipitation intensity (Willenbring & von Blancken-
burg, 2010). Furthermore, the isotopic ratio signature undergoes 
alteration due to penecontemporaneous and post-depositional 
processes, including pedogenesis and the diagenetic release of 
beryllium into pore waters, upon sediment particle deposition 
(Dixon et al., 2018; Deng et al., 2023).

Hence, a robust determination of the initial 10Be/9Be ratio is 
a prerequisite for the effective application of the dating method, 
which employs the radioactive decay of 10Be with a half-life of 
1.387 ± 0.02 Ma (Chmeleff et al., 2010; Korschinek et al., 2010). 
By establishing the initial ratio R0, the radiometric depositional 
age could be calculated using the equation R = R0 × e–λt, where 
R is the measured isotopic 10Be/9Be in the sample, λ the decay 
constant of 10Be and t the time elapsed since deposition, can be 
used to determine the age of the deposited sediment. However, 
it is suggested to determine carefully the initial authigenic ratio 
R0. A complex investigation of the initial 10Be/9Be ratio in the 
Turiec Basin was performed by Šujan et al. (2023b), assuming 
geochemical and mineralogical proxies of paleoenvironmental 
conditions, resulting in the use of the value 143.36 ± 1.41 (× 10−11) 
determined at the Veľký Čepčín outcrop for authigenic 10Be/9Be 

age calculation of terrestrial deposits. This ratio was employed 
in the present study. However, considering the age of the Veľký 
Čepčín succession reaching ~ 370–220 ka (Holec & Braucher, 
2014), the obtained ages should be corrected with the addition 
of 295 ka (median of the range) and a further uncertainty of 
75 ka included in the analytical uncertainty.

Six samples were taken from a floodplain muddy horizon, 
which appears between two gravelly units exposed in the Horná 
Štubňa river terrace outcrop. The sample preparation method-
ology used in this study is described in detail by Šujan et al. 
(2023a). Sample processing for both, accelerator mass spectrom-
etry (AMS) and inductively coupled plasma-mass-spectrometry 
(ICP-MS) measurement was carried out at the Department of 
Geology and Paleontology Laboratory, Faculty of Natural Sci-
ences, Comenius University Bratislava. The methodology for 
authigenic phase extraction is based on Bourlès et al. (1989). An 
amount of ~ 2.25 g crushed and dried sample was leached in a 
solution of 0.04 M NH2OH–HCl in 25% acetic acid for 7 hours 
at ~ 95°C to extract the authigenic phase. ICP-MS measurement 
of 9Be was performed on aliquots of ~ 2 ml taken from the leach-
ing solution, employing linear regression to mitigate the matrix 
effect (Tan & Horlick, 1987).

LGC ICP-MS beryllium standard solution in the amount of 
~ 450 µl was added to the main fraction of the solution, having a 
10Be/9Be ratio in the range of 3.42 × 10−15 to 3.61 × 10−15 concen-
tration 1000 ppm. The spiked solution underwent evaporation 
and purification through column chromatography to isolate 
beryllium from other elements (Merchel & Herpers, 1999). The 
samples were oxidized and the obtained BeO powder mixed 
with Niobium powder was filled into copper cathodes for AMS 
measurements. 

The ICP-MS measurements were performed using Plasma-
Quant ICP-MS System (Analytik Jena AG) at the Institute of 
Chemistry, Slovak Academy of Sciences. Isotopic 10Be/9Be ratio 
measurement was performed at French National AMS facility 
ASTER, CEREGE Aix-en-Provence (France). The measure-
ments were calibrated directly against the STD11 in-house 
standard (10Be/9Be value of 1.191 ± 0.013 (× 10−11)) (Braucher 
et al., 2015). Analytical uncertainties (reported as 1σ) include 
uncertainties associated with AMS counting statistics, two 

Fig. 2. Location of the studied site using LiDAR-based digital elevation model and aerial photograph obtained using Google Earth Pro software (version 

7.3.6.9796). The contours in the digital elevation model map are spaced by 2 m. The Lidar DEM data were provided by the Geodesy, Cartography and 

Cadaster Authority of the Slovak Republic (online at: https://zbgis.skgeodesy.sk/mkzbgis/en/) – location in Fig. 1D.
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chemical blanks measurements and the AMS internal error 
(0.5%). Calculated ages include also the uncertainty associated 
with the initial ratio.

3.3 Fe, Mn, and al analysis in the authigenic phase

The leaching solution employed during sample processing pri-
marily targets the authigenic phase of elements adhered to the 
sediment surface. This phase mainly consists of iron and man-
ganese oxyhydroxides and is recognized as the principal carrier 
of beryllium isotopes (Wittmann et al., 2012). Additionally, the 
concentrations of iron, manganese, and aluminum were deter-
mined in the aliquots extracted for beryllium-9 concentration 
analysis via ICP-MS. The concentrations are reported in ppm 
normalized to the total leaching solution volume.

4. r esults

4.1. stratigraphy based on borehole profiles

The geological section across the studied site, oriented generally 
in a west-east direction and based on seven archival borehole 
lithological logs and the geological map, is shown in Fig. 3. The 
terrain gently rises from the Turiec River floodplain towards the 
east. It reaches an area covered by river terraces according to the 
geological map (0.4–2.5 km along the section), although bore-
hole data confirming their presence are unavailable. The middle 
part of the section traverses two sections of the Mútnik Stream 
floodplain, where the accumulation of Holocene sediments is 
presumed. MS-1 well indicates the presence of a thin layer of 
gravel with mud, interpreted as a river terrace level. Further 
east, the section reaches the landfill near the studied outcrop 

in the 3.5–3.6 km interval of the section (Fig. 2). The section 
shows a river terrace in the range of 3.8–4.5 km, which has been 
documented by MS-2 well (muddy gravels) and by the outcrop 
investigated in this study. The uppermost part of the section 
reveals another river terrace at the highest elevation, ranging 
from 520 to 590 m a.s.l., as documented by V-5 and V-6 wells.

The majority of the shown Quaternary deposits are underlaid 
by the Miocene successions, which according to Gašparik & 
Halouzka (1993), Kováč et al. (2011) and Šujan et al. (2023b) 
should comprise the Upper Miocene Martin Fm., consisting of 
open lake muddy strata with sandy and gravelly intercalations. 
An exception could be seen in the highest point around the V-5 
well, where the Quaternary base overlies Miocene volcanites 
(Fig. 3).

4.2. Facies on the outcrop

Description: The studied outcrop faces southwest. The exposed 
strata gently dip towards the northwest at approximately a 3° in-
clination (Fig. 4A). The lowermost part (4.73–4.05 m) consists of 
grey faintly laminated sandy mud (Fl facies) with an intercalation 
of well-rounded granules forming a clast-supported structure in 
a sub-horizontal layer ~ 10 cm thick (Ghk) (Fig. 4C, D). This 
interval is overlain by a layer of massive, matrix-supported gravel 
(~ 1.65 m thick) (Gmm, Fig. 4C), comprising chaotically ar-
ranged andesite and rhyolite clasts ranging from granules to boul-
ders, predominantly angular with less sub-angular specimens 
(Fig. 5A). The matrix consists of light grey sandy mud. Above 
this layer, there is a horizon of distinctly horizontally laminated 
grey mud (Fhp), transitioning smoothly upwards to dark grey 
and black, spanning 2.05–2.30 m of the outcrop (Fig. 4B). This 

Fig. 3. Generalized stratigraphic section across the study area, based on archival boreholes and the geological map by Gašparik & Halouzka (1993) in the 

case of no borehole information. Location in Fig. 1D.
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layer is covered by distinctly horizontally laminated reddish mud 
(1.60–2.05 m) and distinctly horizontally laminated beige mud 
with reddish intercalations (1.00–1.60 m), both categorized as 
Fhw facies (Fig. 4B). The uppermost unit comprises ~ 1 m thick 
massive matrix-supported gravel, primarily consisting of well-
rounded pebbles and cobbles of andesites and rhyolites (Fig. 5B), 
embedded in reddish sandy matrix (Gmk) (Fig. 4B, D).

Depositional process interpretation: The facies Fl was 
deposited in subaquatic conditions by slow traction currents 
or hyperpycnal flows (Mulder et al., 2003; Yawar & Schieber, 
2017), probably at the bottom of Lake Turiec, bearing a strong 
resemblance to the strata of the Martin Fm. (Šujan et al., 2023b). 
The gravelly intercalation of Ghk likely represents a gravity cur-
rent deposit generated by a nearby deltaic feeder system (Talling 
et al., 2012). Alternatively, it might have been transported to 
the lake bottom by a storm current (Jelby et al., 2020). Moving 
upward, the ~ 1.65 m thick Gmm unit with angular granules to 
boulders exhibits characteristics typical of subaerial cohesive 

debris flow (Pierson & Costa, 1987; Brenna et al., 2020), suggest-
ing a change in the depositional environment. The unit possibly 
consists of amalgamated products of several depositional events. 
Its base is interpreted as the erosional contact between Quater-
nary and Miocene successions. The overlying muddy horizon of 
Fhp facies suggests deposition from slowly flowing (0.2 m·s–1) 
or standing water column (Yawar & Schieber, 2017), with an 
increasing rate of organic matter accumulation upward, which 
remains undecomposed. This likely resulted from poorly drained 
floodplain conditions, associated with a high groundwater level 
and low oxygen availability (Aslan & Autin, 1999; Campo et 
al., 2016). Such settings were attained in a floodplain lake or 
an oxbow lake (Davies-Vollum & Kraus, 2001). Conditions 
changed upwards to a well-drained floodplain, as the laminated 
mud displays variegated colors with reddish markings indicat-
ing preserved oxidized iron in the strata (Aslan & Autin, 1999; 
Campo et al., 2016). The uppermost Gmk unit was probably 
deposited by distinct abrupt events of debris flood rather than by 

Fig. 4. Horná Štubňa river terrace outcrop. (A) Panoramic view on the outcrop wall, (B, C) details of the facies and sampling points. (D) Synthetic sedimen-

tological log of the outcrop with authigenic 10Be/9Be dating sample positions. See text for explanation of the sedimentary environment and stratigraphic 

interpretations. Location in Fig. 1D and 2.
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a continuous channelized stream, given the absence of imbrica-
tion, stratification, or any other form of internal organization. 
Nevertheless, the well-rounded clast nature and sandy matrix 
imply a fluvial origin of the sediment, likely accumulated near 
a river channel during periods of increased overflow (Pierson, 
2005; Brenna et al., 2020).

4.3. authigenic 10Be/9Be dating

The measured concentrations of 9Be and 10Be were used to 
calculate the natural 10Be/9Be ratios of the samples (Tab. 1). 
These ratios range from 0.998 ± 0.025 (× 10−11) to 1.518 ± 0.039 
(× 10−11). The highest ratio, observed in sample HS-3 with a 

value of 1.518 ± 0.039 (× 10−11), exceeds the initial ratio of Veľký 
Čepčín, indicating that age calculation is not feasible in this case. 
The subsequent five samples yielded authigenic 10Be/9Be ages 
ranging from 394.8 ± 13.2 ka to 724.6 ± 23.6 ka (Tab. 1). The 
uncertainties do not overlap, and the ages exhibit a scattered 
pattern (Fig. 6A). However, this age calculation assumes that 
the Veľký Čepčín site is of sub-recent age, which is not the case 
(Holec & Braucher, 2014). Consequently, the ages were adjusted 
by adding the median age of the Veľký Čepčín site (295 ka) and 
incorporating its age range into the age uncertainties (75 ka), as 
illustrated in Fig. 6B. The corrected age range of the five samples 
extends from 689.8 ± 88.2 ka to 1019.6 ± 98.6 ka. Furthermore, 
the correction resulted in much broader uncertainties, which 

Table 1: Concentrations of 9Be and 10Be, 10Be/9Be ratios and calculated ages for the analyzed samples. Uncertainties are 1σ. Concentrations of 10Be are  

corrected for the AMS 10Be/9Be ratio of two processing blanks with the values of 3.64 × 10–14 and 6.17 × 10–14. Despite the relatively high blank isotopic ratios,  

they are two orders of magnitude higher than the AMS ratios of the dating samples. “V. Čepčín age correction was obtained by adding 295 ka (Veľký Čepčín site 

age according to Holec & Braucher, 2014) to the radiometric age calculated using Veľký Čepčín initial ratio, and by adding 75 ka to the dating uncertainty.

ID
9Be (at × g–1) 

× 1016
AMS 10Be/9Be 

(× 10–14)

10Be (at × g–1) 
× 106

Natural 10Be/9Be 
(× 10–11)

Age (ka) 

Veľký Čepčín N0
V. Čepčín age 

correction

HS-1A 15.466 ± 0.309 5.392 ± 0.081 1.641 ± 0.025 1.061 ± 0.027 603.0 ± 19.7 898.0 ± 94.7

HS-1B 15.272 ± 0.305 5.071 ± 0.077 1.525 ± 0.023 0.998 ± 0.025 724.6 ± 23.6 1019.6 ± 98.6

HS-2 8.408 ± 0.168 3.164 ± 0.061 0.949 ± 0.018 1.129 ± 0.031 479.1 ± 16.6 774.1 ± 91.6

HS-3 9.151 ± 0.183 4.645 ± 0.077 1.389 ± 0.023 1.518 ± 0.039 n.a. ± n.a. 180.9 ± 71.2

HS-4 13.780 ± 0.276 5.362 ± 0.091 1.622 ± 0.028 1.177 ± 0.031 394.8 ± 13.2 689.8 ± 88.2

HS-5 10.974 ± 0.219 3.972 ± 0.063 1.193 ± 0.019 1.087 ± 0.028 554.2 ± 18.3 849.2 ± 93.3

Fig. 5. Examples of gravel from Horná Štubňa river terrace outcrop. (A) Mostly angular, less sub-angular pebbles from the lower gravel level (Gmm facies), 

interpreted as a subaerial debris flow. (B) Dominantly rounded to well-rounded pebbles from the upper gravel level (Gmk facies), interpreted as a deposit of 

traction current in a river channel. Note the petrographic similarity of both samples, being composed of andesites and rhyolites. See Fig. 4 for the position 

of the respective gravel strata.
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overlap within a single population, facilitating the calculation 
of the weighted mean age of 838.0 ± 83.3 ka (see Fig. 6B).

4.4. elemental concentrations in the authigenic phase

The concentrations of Al, Fe, and Mn in the authigenic phase of 
the dating samples are presented in Tab. 2. These values were 
plotted against the authigenic 10Be/9Be ratios and total 9Be con-
centrations to investigate potential indications of post-deposi-
tional processes, which could contribute to the relatively high 
scatter of the authigenic 10Be/9Be ages. However, the obtained 
values revealed no correlations or discernible patterns, except for 
the Mn concentration, which is notably lower for HS-3 sample 
compared to the rest of the dataset (Fig. 7).

5. dIscussIon and conclusIons

5.1. authigenic 10Be/9Be geochronology

The significant scatter observed in the authigenic 10Be/9Be ages 
before correcting for the age of the Veľký Čepčín site (refer to 
Fig. 6A) is likely attributed to the low-accommodation rate depo-
sitional conditions typically associated with the formation of 
river terrace staircases. It has been demonstrated by Šujan et al. 
(2023c) that base-level fall and subsequent river incision into 
underlying deposits lead to the redeposition of older mud layers, 
resulting in an apparent increase in age and greater variability 
in the obtained ages. Given that the studied site is situated in 
an intramontane basin characterized by substantial elevation 
differences and an incised river network, such processes are 
highly plausible.

The outlier HS-3 sample, exhibiting a 10Be/9Be ratio higher 
than the initial ratio, was extracted directly from below the base 
of the gravelly Gmk unit, located in the uppermost part of the 
floodplain horizon. Its notably different Mn concentration may 
indicate post-depositional alteration of the authigenic phase, 
suggesting that the hydrological isolation of the uppermost flood-
plain layer was not effective. Hence, the stratigraphic position 

Fig. 6. Authigenic 10Be/9Be ages in 

ascending order with Kernel density 

estimation (KDE) obtained using the 

KDX software (Spencer et al., 2017). 

(A) represents ages without including 

the age of the initial ratio calibration 

site (Veľký Čepčín) into assumption, 

while (B) shows the same ages cor-

rected for the Veľký Čepčín age and 

its uncertainty.

Fig. 7. Authigenic manganese concentrations of the dating samples plot-

ted against the authigenic 10Be/9Be ratios.

Tab. 2: Elemental concentrations in the authigenic phase measured 

using ICP-MS.

ID
Al Fe Mn

(ppm) (ppm) (ppm)

HS-1A 4.89 12.77 0.30

HS-1B 4.25 13.46 0.26

HS-2 6.85 12.99 0.28

HS-3 4.36 22.01 0.15

HS-4 4.96 37.12 0.36

HS-5 7.08 19.33 0.32
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and composition of the sample support its exclusion from dating 
assumptions.

The correction applied to the dating results for the Veľký 
Čepčín site age resulted in significantly wider error bars for 
individual ages, causing them to overlap. It is noteworthy that 
the sedimentary environment of the strata subject to dating 
likely introduces greater variability in the initial 10Be/9Be ratio, 
in comparison to the analytical uncertainties included in the 
current calculation approach. This variability could be linked 
to fluctuations in sediment burial rates, the intensity of pedo-
genic processes, and the aforementioned redeposition of older 
mud layers (Šujan et al., 2023a,b). The performed age correction 
therefore partially supplements the definition of this variability, 
which should be considered in future research endeavors.

5.2 depositional evolution

The analyzed succession was deposited during the early stage of 
the ongoing incision phase of the river network. This is indicated 
by the spatial position of the accumulation near the basin margins 
and its relative vertical position in the system, preserving just 
one higher level (Fig. 3). The lower gravelly unit of the terrace, 
deposited by debris flow, was supplied by angular colluvial mate-
rial without being rounded in a river channel, also indicating an 
early stage of base level fall. The subsequent floodplain deposition 
records a base level rise and a relative increase in accommodation 
rate (Martinsen et al., 1999; Püspöki et al., 2013). The muddy 
nature of this horizon may suggest increased chemical weather-
ing during an interglacial period. The upper gravelly unit with 
rounded pebbles was deposited on an already well-established 
river floodplain near a river channel network, from which the 
pebbles were redeposited during increased overflow, causing 
debris floods. Both gravelly units bear the same petrography of 
andesites and rhyolites, highlighting the same source but diffe-
rent transport mechanisms. These rock types are abundant on 
the margins of the southern Turiec Basin (Fig. 1D).

The corrected weighted mean age of 838.0 ± 3.3 ka for the 
Horná Štubňa terrace should be approached with caution, as 
the full extent of uncertainty related to authigenic 10Be/9Be dat-
ing of fluvial sediment affected by redeposition of mud in an 
incising stream is not yet fully understood (Šujan et al., 2023c). 
Nonetheless, it does offer insights for further consideration. 
This age suggests the end of the Middle Pleistocene transition 
(Pisias & Moore, 1981; Clark et al., 2006) as the period when 
the currently ongoing phase of river incision, associated with 
river terrace formation, began in the Turiec Basin. Therefore, 
the presented data may point to the change in climate during the 
Middle Pleistocene transition as a factor influencing observed 
changes in the base level of the Turiec Basin.

The resulting incision rate is based on the weighted mean age 
of 838.0 ± 83.3 ka and the base-level fall of 26–30 m ranges in 
~ 0.03–0.04 mm·a–1. This pace of incision is an order of magni-
tude lower in comparison to the values observed in the Outer 
Western Carpathians (Olszak & Adamiec, 2016; Olszak, 2017; 
Olszak et al., 2019; Olszak & Alexanderson, 2020), but fits the 
ranges documented in the Pannonian Basin and Transdanubian 
Range areas (Häuselmann et al., 2020; Ruszkiczay-Rüdiger et al., 

2020; Šujan et al., 2023c), and also does not deviate much from 
the low incision rates documented in the Eastern Alps (Wagner 
et al., 2010, 2011; Legrain et al., 2014; Häuselmann et al., 2020). 
Future research of river terrace depositional archives will shed 
more light on the striking difference in incision rates between 
internal and external zones of the mountain range.
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