Two types of scapolite in Evate carbonatite deposit (Mozambique): implications for magmatic versus metamorphic origins

Michaela Gajdošová1, Monika Huraiiová1, Vratislav Hurai2, Marek Slobodník1 & Pete R. Siegfried1

1Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; michaela.gajposova@uniba.sk
2Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia

AEGEOS

Abstract: Two types of scapolite occur in the Evate carbonatite deposit – the largest resource of apatite in south-east Africa. Calcareous rocks composed of amphiboles (hastingsite, hornblende, actinolite, and paragastite), diopside, Ba-rich phlogopite, allanite, epidote, apatite, K-feldspar, titanite, and minor calcite, also contain scapolite with 62–74 mol. % of meionite – (Me) end-member, XMe = 0.06–0.17 and the crystallochemical formula corresponding to (Ca3.46–2.99Na0.00–1.04Al2.60–4.27Si3.95–7.70O12(OH)0.67–1.69Cl0.19–0.47. In contrast, carbonate is enriched with scapolite ranging from Na meionite to Ca mariolite with 46–63 mol. % Me, XMe = 0.19–0.47 and the crystallochemical formula (Na0.45–2.40Ca1.52–2.70)0.25–0.75Al2.50–4.75Si3.50–7.70O12(Cl0.19–2.94S0.05–0.16)0.25. The chemical composition of scapolites mirrors the complex history and multistage evolution of the Evate deposit. The low-Cl, high-S scapolites from calc-silicate rocks are chemically indistinguishable from metamorphic scapolites, whereas the Cl-rich scapolite from carbonatite is interpreted as magmatic in origin. The gradual Cl enrichment reflects an increasing NaCl activity in the scapolite-forming fluid or melt. Both scapolite types are closely associated with amphibole and phlogopite, thus indicating amphibolite-facies conditions during retrograde stages of Late-Proterozoic (Ediacaran) granulite-facies metamorphism and/or Ordovician reactivation.

Key words: scapolite, Evate deposit, Mozambique

1. INTRODUCTION

Minerals of the scapolite supergroup are Cl-, C- or S-bearing tectosilicates with the general formula M[T1,T2]O24A, where M = Na, Ca, K, T = Al, Si, and A = Cl, CO3, SO4. The anionic position A may also be occupied by minor OH and F. Ideal end-members compositions usually range between the marialite (3NaAlSi3O8, NaCl; Me) and meionite (3CaAl2Si2O8, CaCO3; Me) end-members, resembling albite (Ab) and anorthite (An) compositions. However, meionite also forms a solid solution with silvialite (3CaAl2Si2O8, CaCO3) (Teertstra et al., 1999). “Mizzonite” is intermediate scapolite with a dominant marialite component. Naturally-occurring ideal end-member compositions are unknown, the majority of reported minerals range from Me65 to Me85 (Smith et al., 2008). The anionic composition reflects the environment of scapolite formation regarding Cl, CO3, SO4, and H2O contents in fluids or melts.

The scapolite structure consists of two interpenetrating frameworks, [(Si,Al)12O24] and [Na, Ca][Cl,(CO3)], with Al and Si cations distributed in different tetrahedral positions. Sodium and calcium cations rest in smaller cavities, whereas CO3, SO4, and Cl occur in larger cavities of the framework. The scapolite supergroup minerals crystallize with a tetragonal symmetry, in the space groups I4/m and P42/n, where the latter corresponds to the Me47.73 compositions with the highest degree of Al-Si order between the T(2) and T(3) sites (Hawthorne & Sokolova, 2008).

Scapolite crystallizes under silica-deficient magmatic, metamorphic and hydrothermal conditions. Scapolite has been found in alkali basalts (Boivin & Camus, 1981; Teertstra et al., 1999), diorites (Svenningsen, 1994; de Waal et al., 2002), alkali syenites (Brauns, 1914), latite (Goff et al., 1982), granitic pegmatite (Mittwede, 1994), veins in marble (Hogarth, 1970), pegmatoid veins in granulite (Blattner & Black, 1980), apatite-phlogopite-entahitite veins (Lieftink et al., 1993).

In regionally metamorphosed rocks, scapolite has been described from marble (Trommsdorff, 1966; Kerrick et al., 1973; Oterdoom, 1980; Sivaprakash, 1981; Frank, 1983; Schenk, 1984; Warren et al., 1987; Kusachi et al., 1999; Searle & Cox, 2002), granulite (Rosen et al., 1977; Hoefs et al., 1981; Moecher et al., 1992; Abart et al., 2001; Madyukov et al., 2011; Porter & Ausbrich, 2017; Hammerli et al., 2017), amphibolite (Ramsay & Davidson, 1970; Kassoli-Fournarakis, 1991; Raith & Högelsberger, 1994; Faryad, 2002; Pandit et al., 2003), and metagabbro (Jan & Karim, 1995; Yoshino & Satish-Kumar, 2001). Scapolites also occur in quartzite (Hietanen, 1967), metasediments (Mora and Valley, 1991), granitic and granodioritic plutons (Nabelek, 2002; Arranz et al., 2002), in contacts between granodiorite and biotite-gneiss (Mouchos et al., 2016), skarn dyke in limestone (Härme, 1965), zoned skarns at the contact with quartz monzonite (Shay, 1975), ilvaite-hedenbergite skarn (Mpskos, 1978), phlogopite-diopside-apatite skarn (Reznitsky, 1977), skarn associated with tungsten mineralization (Larsen, 1991), graphite-wollastonite-pyrrhotite skarns (Suzuki & Nakai, 1993), skarns at the contact of limestone and siltstone with calc-alumino meta-aluminous dioritic gabbro (Francini et al., 1999), two feldspar-scapolite-spessartine-romeite skarns (Christy & Gatedal, 2005), and iron-oxide-copper-gold ore deposits (Pan et al., 1994; Bernal et al., 2017).
In metasomatic rocks, scapolite has been found as a pervasive replacement of plagioclase in gabbro and diorite (Vanko and Bishop, 1982), and in granite gneiss, amphibolites and metagabbros (Katongo et al., 2011), also in Cl-saturated metagabbro (Engvik et al., 2011), NaCl-rich scapolite pegmatite (Owen & Greenough, 1999), gabbroanorthosite changed by Cl-bearing fluid (Kullerud & Erambert, 1999).

Silvialite occurs in granulite-facies rocks and is also associated with mafic magmatic rocks (e.g., Boivin & Camus, 1981; Goff et al., 1982; Teertstra et al., 1999).

In southern Africa, scapolite is a relatively abundant metamorphic mineral in marbles, metagabbros, calc-silicate lithologies, granitic gneisses, and pelitic schists (Hanson et al., 1994; Katongo et al., 2011). Scapolite-rich layers in metasedimentary turbidite sequences of the Late Proterozoic – Early Paleozoic Damara Orogen (Behr et al., 1983; Swart, 1986; Schmidt-Mumm et al., 1987; Dombrowski et al., 1996) are interpreted as metamorphosed evaporites. Dense sulfate-rich brines accompanying the formation of Cu-Co, Ti, U and Au deposits of central and southern Africa were remobilized during metamorphism and percolated through basin sediments during late – to post-compressional deformations (Schmidt-Mumm et al., 1987; Saintilan et al., 2018).

Here, we describe scapolite from the Evate deposit of north-eastern Mozambique to elucidate its origin. Geochronology of baddeleyite, zircon, zirconolite, U-rich thorianite, and monazite (Siegfried, 1999; Hurai et al., 2017, 2018) revealed polyphase Late Proterozoic to Late Ordovician evolution of the deposit. Since Cl and SO₄ contents of scapolite reflect activities of these anions in mineral-forming fluids (Orville, 1975; Ellis, 1978; Vanko & Bishop, 1982, Katongo et al., 2011), the scapolite chemistry may serve as a useful monitor of the fluid composition during various stages of the deposit formation.

2. GEOLOGICAL BACKGROUND

The Evate deposit (Fig. 1) occurs in the Monapo Klippe – an oval structure 40 × 35 km in size interpreted as a relict of a Neo-proterozoic nappe metamorphosed under granulite-facies conditions (Pinna et al., 1993; Grantham et al., 2008; Viola et al., 2008) and pushed into the Mesoproterozoic basement of the Nampula Complex metamorphosed under amphibolite-facies conditions (Bingen et al., 2009; Macey et al., 2010). The Monapo Klippe consists of granulite-facies rocks of the Metachéria complex intruded by weakly metamorphosed, silica-oversaturated alkaline felsic rocks of the Ramiane suite and undersaturated alkaline mafic to ultramafic rocks of the Mazerapane suite.

The Evate deposit is an elongated body, about 3 km long and 850 m wide, consisting of 5 – 100 m thick apatite-magnetite-carbonate horizons intercalated with 2 – 40 m wide zones of

Fig. 1. Simplified geological maps of northern Mozambique (a) and Monapo Klippe (b) adapted from Macey et al. (2013).
bopite ores with an average P₂O₅ grade of 9.32 wt. % to a depth of 100 m. The deposit is covered with 3–38 m thick regolith containing 4–64 wt. % apatite (Davidson, 1986).

The genesis of the Evate deposit is contentious. A fenite aureole around apatite-magnetite-carbonate parts and close spatial relationship with surrounding felsic and mafic plutons has been interpreted as evidence of an intrusive magmatic origin (Macey et al., 2013; Barbosa et al., 2016). A hydrothermal-metasomatic origin has alternatively been proposed based on the preferential accumulation of apatite along N – S, W – E, and NW – SE-trending faults (Cilek, 1989). The deposit has also been described as a metasomatic/metamorphic marble (Karllson; Ueda et al., 2012; Macey et al., 2013).

Uranium-Pb-(Th) dating of baddeleyite, zircon, zirconolite, U-rich thorianite, and monazite (Siegfried, 1999; Hurai et al., 2017, 2018) returned Late Proterozoic to Late Ordovician ages. The Late Ediacaran (~ 590 Ma) high-temperature (~ 800°C) phase was likely coincidental with post-granulite retrograde metamorphism. Mineral-forming processes ended with the precipitation of zeolites from low-temperature (< 300°C) alkaline carbo-hydrothermal fluids. Niobium-poor zirconolite and cerium-rich monazite yielded late Ordovician ages (443 ± 3 and 449 ± 2 Ma). A Late Cambrian age of Nb-rich zirconolite (485 ± 9 Ma) and U-rich thorianite (493 ± 10 Ma) plotted between the age of Ce-rich monazite from anhydrite-bearing carbonatite and that of zircon and baddeleyite from magmatite-apatite-olivine rocks. The Early Palaeozoic evolution of the Evate deposit was driven by the post-orogenic collapse and tectonic fragmentation of the Gondwana supercontinent (Hurai et al., 2018).

3. METHODS

The chemical composition of scapolites was measured using a Cameca SX-100 electron probe (Geological Survey of Slovakia, Bratislava) operated in wavelength dispersive mode with the following analytical conditions: 15 kV accelerating voltage, 20 nA beam current, and beam diameter focused to 2 – 4 μm. The following standards, detector types and spectral positions were used: Si (orthoclase, TAP, Ka), Al₂O₃ (Al₂O₃, TAP, Ka), Ca (wollastonite, LPET, Ka), TiO₂ (TiO₂, LPET, Ka), K (orthoclase, LPET, Ka), Na₂O (albite, TAP, Ka), MnO (rhodonite, LILF, Ka), Cr₂O₃ (Cr, LILF, Ka), MgO (forsterite, TAP, Ka), Cl (NaCl, LPET, Ka), S (barite, LPET, Ka), Fe₂O₃ (fayalite, LILF, Ka), Sr (SrTiO₃, LPET, La).

Scapolites contain 24 atoms of framework oxygen per formula unit (apfu). Hence, their formulae were calculated from electron probe microanalyses (EPMA) by normalizing to 12 Si + Al apfu (Teetstra and Sherriff, 1997). Monovalent and divalent cations were assigned to the M site. All Fe was taken as Fe²⁺. The sum of cations in the M position was set to 4 apfu, whereas the sum of anions in the A position was normalized to 1 apfu. Carbon apfu values were calculated as C=1-CI-F and then converted to CO₂ wt. % equivalent.

A confocal Xplora Raman spectrometer from Horiba Ltd. (Institute of Earth Sciences, Bratislava) was used for the characterization of vibration modes. The system includes a flat-field 20 cm spectrograph with a multichannel Peltier-cooled (~ 70°C) Syncerity CCD detector (256 pixels) and a colour camera optically coupled to an Olympus BX-51 microscope. Raman spectra were collected with a 100x long-working distance objective lens (NA = 0.8, WD = 3.4 mm), 532 nm excitation wavelength of a 25 mW solid-state Nd-YAG laser, and 638 nm excitation wavelength of a 24 mW diode laser. A set of band-pass and edge filters were used to collect scattered light in the 100 – 4000 cm⁻¹ region. The holographic grating with 1800 grooves/mm combined with a 50 μm entrance slit enabled the maximum spectral resolution of 0.4 cm⁻¹ using the 532 nm excitation wavelength. The detector was calibrated by using the most intense vibrational band of silicium (520.7 cm⁻¹). Spectrum acquisition was done using the LabSpec6 software. Spectra were scanned first in real-time-display mode in various positions using the rotate stage and then representative spectra were recorded using the 1800 grooves/mm spectrometer grating and 20 s acquisition time.

4. SAMPLES

Scapolites were identified in two drill cores obtained during the expedition of Geoindustria state enterprise in the early 1980s. Sample EVT-5 is calcite carbonatite from a depth of 170.4 m. The carbonatite is rimmed with a 2 cm thick band of amphibole crystals, separating it from a calc-silicate rock consisting of amphibole, biotite, and diopside (Fig. 2a). Massive homogeneous calcite in the carbonatite part is devoid of dolomite exsolutions. The amphibole-rich intermediate zone contains paragasite, actinolite, and hastingsite. Diopside with composition Wo₄₀₋₅₀En₄₄₋₄₇Fs₇₋₈ and biotite occur in the silicate-rich part. A massive aggregate of scapolite crystallized between the carbonatite and amphibole-rich parts (Figs. 2b-d). Scapolite contains paragonite inclusions and is associated with minor calcite, plagioclase (albite Ab₇₃₋₇₄An₂₂₋₂₇Or₀₋₁ to andesine Ab₅₁An₄₈Or₁), biotite, and allanite (Figs. 2e-f). Analcime replaces the scapolite along cleavage planes. Anhydrite and celestine occur as inclusions in calcite and as late infillings between adjacent calcite grains. Large apatite grains (Fig. 2f) in the scapolite-rich zone correspond to fluorapatite (2.3 – 2.9 wt. % F) with minor REE₂O₃ and SO₄ (0.3 – 0.4 wt. %). Allanite-(Ce) with variable REE contents (17.2 to 21.2 wt. %) forms thin rims around calcite and scapolite grains (Fig. 2e-f).

Sample F-70 is a calc-silicate rock from a depth of 109 m. Minerals identified using optical microscopy and EPMA comprise zoned amphiboles (hastingsite, hornblende, actinolite, and paragasite), diopside, phlogopite, allanite, epidote, apatite, K-feldspars, titanite, and minor calcite (Figs. 3a-d). Accessory apatite (Fig. 3a-b) corresponds to fluorapatite with a lower F (1.9 – 2.4 wt. %) and higher REE contents (0.5 – 0.8 wt. % REE₂O₃) relative to those in sample EVT-5. K-feldspar surrounded by phlogopite has a high Ba content (up to 11.4 wt. % BaO). Allanite forms large zoned grains with REE contents (10.2 – 19.6 wt. % REE₂O₃) dominated by Ce. Scapolite grains
interstitial to amphiboles and pyroxenes are transparent in transmitted plane-polarized light and show high relief and cleavage planes oriented in two directions. A dense network of minute pyrrhotite inclusions occur in scapolite cores (Fig. 3a,b). Only one larger sulfide aggregate within scapolite core, composed of pyrite, pyrrhotite, and chalcopyrite, 100-150 μm in size has been observed.

5. RESULTS

5.1 Raman spectrometry

Raman spectra of scapolite scanned in various grain orientations are shown in Fig. 4. Vibration spectra are largely similar for both investigated samples and include bands at 157,255, 293, 414 – 418,
67

450, 527 – 534, 766 – 758, and 1094 – 1099 cm⁻¹, which are diagnostic of marialite and meionite (Lafuente et al., 2015). A strong band at 982 cm⁻¹ in scapolite from calc-silicate sample F-70 is consistent with the main ν₁ vibration mode of the SO₄²⁻ ion (e.g., Schwarcz & Speelman, 1965). This band also occurs occasionally in other Cl-rich members of the scapolite supergroup (Lafuente et al., 2015) and could be attributed to the sulfate anion in the scapolite structure. Other anions could not be conclusively identified, as the main ν₁ vibration mode of CO₃²⁻ at ~1090 cm⁻¹ is obscured by that of the SiO₄⁴⁻ group, and other CO₃²⁻ modes at 1400 – 1500 cm⁻¹ together with the OH-stretching vibrations between 3000 and 4000 cm⁻¹ were overwhelmed by strong fluorescence.

5.2 Chemical composition

Representative EPMA analyses are summarized in Tab. 1. Calcium (14.9 – 17.4 wt. % CaO) predominates over Na (3.2 – 4.9 wt. % Na₂O) and Mg (19.2 – 25.9 wt. % MgO). The FeO values range from 1.8 to 2.5 wt. %.

Fig. 3. Plane- and cross-polarized transmitted light images (a-b) and backscattered electron images (c-d) of scapolite from calc-silicate drillcore F-70. Note grey-coloured scapolite cores in (a) and (b) with numerous Fe-sulphide (pyrrhotite) inclusions. (c) A large grain of scapolite with bright minute inclusions of pyrrhotite and an isolated calcite inclusion. Other minerals are represented by phlogopite (Phl), actinolite (Act), calcite and diopside (Di). (d) Scapolite associated with actinolite (Act), hornblende (Hbl), pargasite (Prg), diopside, calcite, and titanite (Ttn).

Fig. 4. Representative Raman spectra of scapolite grains from both samples scanned in two perpendicular orientations. Spectra are offset for clarity.
wt. % Na₂O) in calc-silicate sample F-70, whereas slightly lower CaO and higher Na₂O contents (11.5 – 15.4 and 4.9 – 7.2 wt. %, respectively) were recorded in carbonatite EVT-5. Strontium is present in minor quantities (0.3 – 1.2 wt. % SrO). The two samples also differ in the occupancy of their anionic positions.

The Cl content is in the range of 0.2 – 0.7 wt. % and the SO₄ content fluctuates from 1.8 to 2.6 wt. % in calc-silicate F-70. In contrast, scapolite from carbonatite EVT-5 shows higher Cl values (0.8 – 1.9 wt. %) and a wider SO₄ range (nil to 2.7 wt. %). Calculated CO₃ contents are generally higher in F-70 (3.2 – 3.6 wt. %) compared to EVT-5 (2.3 – 3.7 wt. %).

Apart from the proportion of marialite and meionite components, the scapolite nomenclature also relies on the equivalent anorthite component (EqAn = 100(Al-3)/3) often used for comparison with plagioclases (Evans et al., 1969). For the range of Ca/(Ca + Na) ratios from 0 to 0.75, the scapolite compositions change linearly between ideal marialite end-member Na₄Al₃Si₉O₂₄Cl (Ma) and NaCa₃Al₅Si₇O₂₄CO₃ component through the substitution of Na₄Si₉Cl with Ca₃Al₂CO₃ (Ca can be substituted by minor Sr, Na by K, and CO₃ by SO₄). For the Ca/(Ca + Na) range between 0.75 and 1, the compositions between Na₄Al₃Si₉O₂₄Cl and Ca₄Al₅Si₇O₂₄CO₃ end-members are obtained by replacing the NaSi component with CaAl as in plagioclases, without the change in the anionic site fully occupied at 0.75 apfu (Evans et al., 1969).

Early scapolite from carbonatite EVT-5 is depleted in sulphur (nil to 0.05 apfu), particularly in grain centers associated with biotite. The scapolite rims are significantly enriched in S (0.15 – 0.26 apfu), particularly along grain margins in contact with apatite, calcite, and allanite. Scapolites from carbonatite EVT-5 exhibit EqAn values between 43 and 58, whereas marialite and meionite contents are almost similar (46 – 63 mol. % Me). These scapolites contain lower Ca (1.82 – 2.49 apfu), higher Na (1.44 – 2.07 apfu), Cl (0.19 – 0.47 apfu) and calculated C contents (0.45 – 0.74 apfu).

Tab. 1. Chemical composition of scapolites from Evate deposit with crystallochemical formulas based on 24 oxygen atoms, T-site occupancy (Si + Al) normalized to 12 cations and that of the A-site normalized to 1 anion. Fluorine content has been measured, but not detected.

<table>
<thead>
<tr>
<th>Sample</th>
<th>F-70</th>
<th>F-70</th>
<th>F-70</th>
<th>F-70</th>
<th>EVT-5</th>
<th>EVT-5</th>
<th>EVT-5</th>
<th>EVT-5</th>
<th>EVT-5</th>
<th>EVT-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>an1</td>
<td>an3</td>
<td>an5</td>
<td>an21</td>
<td>an1</td>
<td>an2</td>
<td>an4</td>
<td>an32</td>
<td>an9</td>
<td>an7</td>
</tr>
<tr>
<td>Type</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>SiO₂</td>
<td>45.54</td>
<td>47.17</td>
<td>47.68</td>
<td>45.30</td>
<td>44.95</td>
<td>50.71</td>
<td>51.72</td>
<td>51.71</td>
<td>48.63</td>
<td>50.46</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26.94</td>
<td>26.11</td>
<td>25.04</td>
<td>26.77</td>
<td>26.89</td>
<td>25.5</td>
<td>24.49</td>
<td>24.61</td>
<td>25.46</td>
<td>25.27</td>
</tr>
<tr>
<td>FeO</td>
<td>0.03</td>
<td>0.13</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>16.78</td>
<td>15.97</td>
<td>14.78</td>
<td>16.99</td>
<td>17.21</td>
<td>12.91</td>
<td>11.79</td>
<td>11.48</td>
<td>14.45</td>
<td>13.21</td>
</tr>
<tr>
<td>SrO</td>
<td>1.06</td>
<td>0.84</td>
<td>0.78</td>
<td>0.96</td>
<td>0.92</td>
<td>0.42</td>
<td>0.31</td>
<td>0.29</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.62</td>
<td>4.31</td>
<td>4.92</td>
<td>3.54</td>
<td>3.33</td>
<td>6.25</td>
<td>7.00</td>
<td>7.02</td>
<td>5.27</td>
<td>6.34</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.16</td>
<td>0.17</td>
<td>0.29</td>
<td>0.13</td>
<td>0.14</td>
<td>0.29</td>
<td>0.33</td>
<td>0.47</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>SO₄</td>
<td>2.45</td>
<td>2.35</td>
<td>1.86</td>
<td>2.21</td>
<td>2.34</td>
<td>0.04</td>
<td>0.02</td>
<td>0.50</td>
<td>2.71</td>
<td>1.83</td>
</tr>
<tr>
<td>CO₃*</td>
<td>3.37</td>
<td>3.33</td>
<td>3.23</td>
<td>3.55</td>
<td>3.51</td>
<td>3.03</td>
<td>2.75</td>
<td>2.41</td>
<td>2.56</td>
<td>2.59</td>
</tr>
<tr>
<td>Cl</td>
<td>0.33</td>
<td>0.41</td>
<td>0.66</td>
<td>0.28</td>
<td>0.26</td>
<td>1.53</td>
<td>1.77</td>
<td>1.86</td>
<td>0.88</td>
<td>1.23</td>
</tr>
<tr>
<td>O=Cl</td>
<td>4.07</td>
<td>4.09</td>
<td>0.15</td>
<td>0.06</td>
<td>0.06</td>
<td>0.35</td>
<td>0.40</td>
<td>0.42</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>Total</td>
<td>100.21</td>
<td>100.7</td>
<td>99.17</td>
<td>99.72</td>
<td>99.53</td>
<td>100.35</td>
<td>100.52</td>
<td>99.94</td>
<td>100.5</td>
<td>101.55</td>
</tr>
</tbody>
</table>

Marialite Ma =100(Na/(Na+Ca+K)) and meionite Me = 100(Ca/(Ca+Na+K)) components in mole % (Shaw, 1960), EqAn is an equivalent anorthite component in mole % calculated as EqAn = 100(Al-3)/3 (Evans et al., 1969).
in comparison with sample F-70. The composition of EVT-5 scapolite expressed as formula is (Na\textsubscript{1.43-2.07} Ca\textsubscript{1.82-2.50} \Σ\textsubscript{3.97-4.11} Al\textsubscript{4.29-4.73} Si\textsubscript{7.27-7.70} O\textsubscript{24} (Cl\textsubscript{0.19-0.47} S\textsubscript{0.00-0.25} C\textsubscript{0.45-0.74} \Σ\textsubscript{1.00}.

Scapolites from calc-silicate rock F-70 exhibit higher Eq\textsubscript{An} values (54 – 68 mol. %), higher Ca and meionite contents (2.46 – 2.99 apfu and 62 – 74 mol. %), but lower Na and Cl values (1.0 – 1.47 apfu and 0.06 – 0.17 apfu), respectively, and calculated C contents within the range of 0.64 – 0.71 apfu. Their formula is (Ca\textsubscript{2.46-2.99} Na\textsubscript{1.00-1.47} \Σ\textsubscript{4.00-4.20} Al\textsubscript{4.62-5.04} Si\textsubscript{6.95-7.37} O\textsubscript{24} (Cl\textsubscript{0.06-0.16} S\textsubscript{0.18-0.26} C\textsubscript{0.64-0.70} \Σ\textsubscript{1.00} . All scapolites from Evate plot along the marialite-“mizzonite” join (Fig. 5), thus reflecting the dominant solid solution between Cl - and CO\textsubscript{3} end-members, and subordinate substitution between the Cl - and SO\textsubscript{4} end-members.

All scapolites from Evate fall into the group of sodic scapolites with the maximal Al-Si order between the T(2) and T(3) sites, thus probably corresponding to the P\textsubscript{42}/n space group (Hawthorne & Sokolova, 2008). Few analyses from carbonatite EVT-5 plot within the field of calcic marialite. The scapolite from calc-silicate drillcore F-70 is more meionitic (Ca-rich) compared with that from EVT-5 (Figs. 6 – 7).

6. DISCUSSION

The dominant Cl- and CO\textsubscript{3}–rich end-member substitution in scapolites from Evate is illustrated in Fig. 8a, which also summarizes data on scapolites of various origins. Scapolites from calc-silicate drillcore F-70 overlap the field of scapolites from metamorphosed calc-silicate rocks aligned along the meionite-silvialite join. Compositionally similar scapolites from Sludyanka (Russia) are also attributed to a metamorphogenic origin (Reznitsky, 1978).

Scapolites with different SO\textsubscript{4} / [SO\textsubscript{4} + CO\textsubscript{3} + Cl] ratios have been distinguished in the carbonatite drillcore EVT-5. The earliest generation of scapolite to crystallize (Scp I, Fig. 8a) has relatively low SO\textsubscript{4} / [SO\textsubscript{4} + CO\textsubscript{3} + Cl] ratios and high Cl content and is similar to scapolite from alkali-basaltic Kula Volcanic Province in Turkey (Smith et al., 2008). A younger generation (Scp II) has higher SO\textsubscript{4} / [SO\textsubscript{4} + CO\textsubscript{3} + Cl] ratios and is similar to scapolite from pegmatite associated with carbonatites from Ilmeny Mountains in Russia (Korinevsky, 2015; Korinevsky & Korinevsky, 2016). Both scapolite types plot within the field of magmatic scapolite. The magmatic

Fig. 6. a) Compositional plot of scapolites modified after Hawthorne and Sokolova (2008). Open squares correspond to end-member compositions. b) Plot of (Na + K) versus (Ca + Sr) (apfu) with iso-lines for ΣM = 3 and 4 apfu (modified after Teertstra et al. 1999).
origin of the Evate deposit is also corroborated by the presence of molybdenite and high crystallization temperatures, > 814 °C derived from the calcite-dolomite thermometry (Hurai et al. 2017).

Primary magmatic scapolite is not common, but it has been reported to crystallize from silica-deficient magmas enriched in CO₂, SO₃, and/or Cl (Goff et al., 1982). As a rule, the magmatic scapolites are more meionitic (Ca-rich) in composition. Such compositions indicate relatively high CO₂ partial pressure, and high temperatures and pressures, exceeding 850 °C (Goldsmith & Newton, 1977; Millhollen, 1974; Goff et al., 1982; Oterdoom & Wenk, 1983; Smith et al., 2008) and 3 kbar (Millhollen, 1974; Smith et al., 2008), respectively. Compositions approaching pure meionite endmembers have not been observed in magmatic rocks.

Meionitic scapolite is also typical of calc-silicate rocks metamorphosed under amphibolite- and granulite-facies conditions (Fig. 8a). Scapolite analyses from these rocks span from the CO₂-apex, corresponding to the CO₂ content of ~ 4 – 5 wt. %, towards the SO₄-apex, reaching SO₄ values as high as 7 wt. % SO₄, corresponding to the SO₄ / [SO₄ + CO₂ + Cl] ratio of 0.82 (Schenk, 1984). Sulphur-rich scapolite also crystallizes at elevated temperatures, approaching 900 – 1000 °C (Goldsmith & Newton, 1977), and/or under high partial pressures of SO₄ in the coexisting fluid (Goff et al., 1982). Although granulite facies rocks are often considered volatile-free rocks, granulite-hosted silvialite provides a sulphate reservoir, which becomes unstable during retrograde hydration under amphibolite-facies conditions (Goldsmith & Newton, 1977; Schenk, 1984).

Scapolite from calc-silicate drillcore sample F-70 with the maximum SO₄ / [SO₄ + CO₂ + Cl] value of 0.38 plots in between the SO₄- and CO₂-rich end-members typical of granulite-facies rocks. The high sulphate content in the scapolite was corroborated by the intense Raman vibration at 982 cm⁻¹. The presence of actinolite, hornblende, and pargasite (Figs. 2 and 3) indicates amphibolite-facies conditions.

Fig. 7. Plot of Al / (Al + Si) (apfu) versus the percentage of meionite component and end-member fractions modified after Hassan and Buseck (1988). The solid line denotes the substitution of [Na₄Cl]Si by [Na₉Ca₃CO₃]Al, in series A and the substitution of [Na₉Ca₃CO₃]Si by [Ca₄CO₃]Al in series B. Series A also represents sodic scapolite, whereas series B represents calcic scapolite. The two substitutional mechanisms operate independently.

Fig. 8. a) SO₄–Cl–CO₂ diagram for the scapolite supergroup with analytical data from Evate and compositional fields for various genetic types of scapolites compiled from literature: metamorphic rocks: granulate facies – Bergen Arcs, Norway (Porter and Austrheim, 2017); Massif Central, France, New South Wales, Australia, Shai Hill, Ghana (Hammerli et al., 2017); calc-silicate rocks – Sare Sang, Afghanistan (Faryad, 2002); Kerala Khondalite Belt, India (Satish-Kumar and Harley, 1998); Takab, Iran (Moazzen et al., 2009); Central Alps, Switzerland (Kuhn et al., 2005); Maligawila, Sri Lanka (Mathavan and Fernando, 2001); Sarti, Greece (Kassoli-Fournarakis, 1991); Ghats Belt, India (Dasgupta and Pal, 2005); Pamir, Tajikistan (Madyukov et al., 2011); Sludyanka, Russia (Reznitsky, 1978). Skarn – Långban, Värmland, Sweden (Christy and Gathedal, 2005). IOCG and gold deposits – Norrbotten County, Sweden (Bernal et al., 2017); Nickel Plate and Hemlo, Canada (Pan et al., 1994). Metasomatic rocks – Humboldt igneous lopolith, Nevada, USA (Vanko and Bishop, 1982); Nusfjord, Lofoten, Norway (Kullerud and Erambert, 1999); Ødegårdens Verk, Bamble, Norway (Lieftink et al., 1993; Engvik et al., 2011); Idaho, USA (Mora and Valley, 1991); Lufluian–Zambezi Belt, Zambia (Katongo et al., 2011); Minas fault, Nova Scotia, Canada (Owen and Greenough, 1999); Sudbury, Ontario, Canada (Schandl et al., 2011). Magmatic rocks – scapolite megacryst in alkali basalt, Olot Suite, Spain (Torró et al., 2018); cumulate nodules, Kula Volcanic Province, Turkey (Smith et al., 2008); pegmatite associated with carbonatites, Ilmeny Mountains, Russia (Korinevsky, 2015; Korinevsky and Korinevsky, 2016); gem-quality scapolite, Ihosy, Madagascar (Superchi et al., 2010). b) Ca-Na-K diagram of scapolites from different rock types. Note that all scapolites are poor in K and substitution exists only between the Ca- and Na-dominant end-members.
7. CONCLUSION

Two scapolite types have been distinguished in the apatite-carbonatite deposit of Evate in NE Mozambique. The Cl-rich scapolite from carbonatite projects within the field of magmatic scapolites, thus providing a piece of additional evidence for the magmatic stage involved in the history of the Evate deposit. In contrast, Cl-poor and S-rich scapolite with pyrrhotite inclusions from calc-silicate rock projects within the field of metamorphic scapolites. An intimate spatial relationship of both scapolite types with actinolitic and pargasitic amphiboles indicates amphibolite-facies conditions. Contrasting Cl contents reflect different NaCl activities in the coexisting fluid or melt.

Acknowledgements: This study was supported by the VEGA grant No. 2/0118/16 and the Centre of Excellence for Integrated Research on the Geosphere (ITMS 26220120064) funded by the Research and Development Operation Program. The initial version of the manuscript strongly benefited from constructive reviews of A. R. Chakhmouradian and an anonymous reviewer.

References

Bernal N.F., Gleeson S.A., Smith M.P., Barnes J.D. & Pan Y., 2017: Evidence of halogen signature related to seawater, magmatic and evaporitic sources (Bernal et al., 2011), and are predominantly marialitic in composition. Metasomatically altered rocks are Ma-rich with increased Na content. The scapolite composition plotted against the isopleths of coexisting aqueous fluids (Fig. 9) indicates salinities lower than 26 wt. % NaCl in the calc-silicate sample F-70 contrasting with salinities from 36 up to 68 wt. % associated with the carbonatite drillcore EVT-5. It must be emphasized, however, that the diagram was constructed for temperatures and pressures of 750 °C and 4 kbar, respectively. Projection points of Ca-rich marialite (28 – 46 % Me, XNaCl = 0.37 – 0.84) from metagabbros and amphibolites of the Lufilian-Zambezi belt affiliated with the amphibolite-facies metamorphism plot in the same diagram at higher or even unrealistically high NaCl concentrations, exceeding the XNaCl value of pure NaCl (Katongo et al., 2011).

Fig. 9. Salinities of aqueous fluids coexisting with scapolite of the marialite-meionite series (Ellis, 1978) superimposed on the XMe versus EqAn diagram expressing the scapolite composition (modified after Evans et al., 1969). Concentration units along isopleths (subhorizontal dashed and solid curves) refer to mole fraction (xNaCl) and mass percentage (mNaCl) in wt. % of NaCl in the coexisting aqueous fluid.

According to the experiments with scapolite solid solutions at 750 °C and 4 kbar (Orville, 1975) almost pure marialite end-member occurs in rocks with high NaCl activity. Therefore scapolites in metasomatic rocks have high Cl content (green area in Fig. 8a). These scapolites are mostly formed by pervasive replacement of plagioclase (Vanko & Bishop, 1982; Katongo et al., 2011), and are predominantly marialitic in composition. Scapolite in IOCG deposit in Norrbotten County is also Mar-rich with halogen signature related to seawater, magmatic and evaporitic sources (Bernal et al., 2017).

The Ca-Na-K substitution at cation position (Fig. 8b) is observed only between Ca and Na. K content in scapolites from all rock types is very low. Magmatic scapolite from EVT-5 sample plots between Ca and Na with intermediate composition, similar to anionic positions in SO4-Cl-CO3 diagram (Fig. 8a). Scapolites from calc-silicate rock F-70 have higher Ca content (Me-rich) and plot close to Ca-apex together with rocks with similar composition. Metasomatically altered rocks are Ma-rich with increased Na content.

The scapolite composition plotted against the isopleths of coexisting aqueous fluids (Fig. 9) indicates salinities lower than 26 wt. % NaCl in the calc-silicate sample F-70 contrasting with salinities from 36 up to 68 wt. % associated with the carbonatite drillcore EVT-5. It must be emphasized, however, that the diagram was constructed for temperatures and pressures of 750 °C and 4 kbar, respectively. Projection points of Ca-rich marialite (28 – 46 % Me, XNaCl = 0.37 – 0.84) from metagabbros and amphibolites of the Lufilian-Zambezi belt affiliated with the amphibolite-facies metamorphism plot in the same diagram at higher or even unrealistically high NaCl concentrations, exceeding the XNaCl value of pure NaCl (Katongo et al., 2011).

Faryad S.W., 2002: Metamorphic conditions and fluid compositions of scapolite-bearing rocks from the lapis lazuli deposit at Sare Sang, Afghanistan. *Journal of Petrology*, 4, 725–747.

