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Abstract: The N-75 highway has a strategic and socio-economic importance in North Pakistan and is prone to frequent 
disruption by landslides. For landslide mitigation strategies of this highway, comprehensive landslide inventory and suscepti-
bility assessment are rarely available. This study presents the application of Analytical Hierarchy Process (AHP) and Weighted 
Overlay Analysis (WOA) models for the assessment of landslide susceptibility zonation map of the area. To perform these 
models, nine usual causative factors of landslides (slope, aspect, curvature, lithology, normalised differentiation vegetation 
index, rainfall, and distance from faults, roads, and streams) were taken into account. For the preparation of thematic maps 
and other data layers, Digital Elevation Models (DEM), existing geological maps, and authorized data were being processed 
in GIS environment (ArcMap 10.3). The output landslide susceptibility maps of the study area were classified into five (i.e. 
very low, low, moderate, high, and very high) landslide susceptibility classes. The competencies of the landslide suscepti-
bility zonation maps derived from AHP and WOA models were validated using Area under Curve method. The developed 
susceptibility maps can be adopted for land use planning and landslide mitigation strategies.
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1. Introduction 

Landslides are considered as one of the major destructive geologi-
cal hazards. About 16,000 people were killed in Europe in the 
last century (Nadim et al., 2006), with major fatalities around 
the world (20,000 to 50,000 in 1999 in Venezuela, 29,000 in 
2008 in China) (Kjekstad & Highland, 2009; Petley, 2012). 
Economic losses from landslides have apparently increased as 
urban development spreads to hilly areas. Despite progress in 
landslide research, the social and economic impacts of landslides 
remain high because of the lack of proper mitigation strategies 
and early prediction measures (Westen et al., 2006). 

In developing countries like Pakistan, landslides pose a sig-
nificant threat to the mountain areas of northern Pakistan. Par-
ticularly, the threat is well recognized in the young Himalayan 
Mountains in north Pakistan due to inherently unstable nature 
of rocks, highly steep slopes, active seismicity, and monsoon 
rainfall in the area. The landslides caused by the 2005 Kashmir 
earthquake affected an aerial extent of >7500 km2 (Kamp et al., 
2008). Due to the Kashmir earthquake, about 2500 landslides 
were caused (Sato et al., 2007), which determined around 26,000 
fatalities directly or indirectly (Mahmood et al., 2015). The Hat-
tian Bala rock avalanche was the main landslide connected with 
the earthquake that entirely destroyed a village and congested 
the Jhelum River tributaries, forming a dam. The reported deaths 
were around 1000, due to this huge landslide and with overall 
volume of around 85×106 m3; whereas, the affected region was 

around 1.8 km2 (Dunning et al., 2007). Besides, massive infra-
structure and human loss were caused by numerous landslides 
in Balakot and its surrounding (Jadoon et al., 2015).

Landslide susceptibility and risk assessment, and hazard analy-
sis are very important to minimize the impact of landslides. 
Landslide susceptibility maps highlight the prone areas where 
landslides may occur in the future. Therefore, susceptibility maps 
are very important for effective landslide mitigation strategies 
and future planning in an area. The production of landslide sus-
ceptibility maps includes several external ecological and internal 
geological factors affecting the landslide distribution, such as li-
thology, slope configuration, drainage patterns, land use, rainfall, 
seismicity, dynamic loads, and climate change (Mehmood et al., 
2021). With the advancement of technology, sophisticated and 
modern techniques such as logistic regression analysis, artificial 
neural network, analytic hierarchy process, and weighted overlay 
analysis have gained substantial importance for development 
of thematic data layers used to generate effective susceptibility 
mapping (Ahmed et al., 2014; Awawdeh et al., 2018; Basharat 
et al., 2016; Feizizadeh & Blaschke, 2013). 

Despite of high threat to the socio-economic environment 
of northern Pakistan, especially in the Himalayas region, no 
recorded data in most areas on landslide susceptibility are avail-
able to assess and mitigate the impact of landslides. One such 
example is of N-75 highway in the Himalayan Mountains of Pa-
kistan, which has national economic and strategic importance 
because is the only transportation route between Pakistan and 
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Azad Jammu and Kashmir. This article provides landslide sus-
ceptibility analysis for the Lower Topa to Kohala bridge por-
tion of the N-75 highway in order to decrease potential landslide 
damages (Fig. 1). This part of the highway is chosen since it was 
one of the worst-affected sections by landslides during and after 
the 2005 Kashmir earthquake. The key objective of this study 
is to generate landslide susceptibility maps of the N-75 highway 
using incorporated statistical technique Analytical Hierarchy 
Process (AHP) and Weighted Overlay Analysis (WOA). This 
approach uses information from the inventory map to forecast 
where landslides may occur in the future. The second objective 
of this study is to compare the results and precision of the two 
models AHP command tool and AHP combined with WOA and 
to indicate the future improvements of the technique. The applied 
approaches are simple and deliver comparatively quick results 
that can easily be rationalised on demand. This study is an effort 
to generate landslide susceptibility maps and indicate landslide 
susceptible zones to reduce destruction by landslides in future.

2. Study Ar ea

The study area encompasses a distance of 34 km along the N-75 
highway in the northeast of the capital territory of Islamabad, 
Pakistan (Fig. 1). Geographically, the study area is located in the 
close vicinity of Murree, a mountainous tourist city in the NW 
Himalayan fold and thrust belt in Pakistan. The altitude of the 

study area ranges from 520 m to 2216 m above sea level and is 
often affected by landslides, particularly due to active tectonics, 
steep topography, high seismicity, and heavy rainfall. 

Geologically, the study area is located in the southwestern 
part of the Hazara-Kashmir Syntaxis (HKS) in Pakistan (Fig. 
2). The HKS is a regional antiformal syncline that folds the 
Lesser and Sub-Himalayas. The structural architecture of the 
study area is controlled by major thrust faults, as the Panjal 
Thrust (PT), Main Central Thrust (MCT), and Main Boundary 
Thrust (MBT), which are responsible for historical destructive 
earthquakes in the region (Baig & Lawrence, 1987; Cham-
bers, 1992; Iqbal & Bannert, 1998). The north-south left-lateral 
Jhelum Fault (JF) links these major thrusts in the study area 
(Fig. 2). Stratigraphy of the area shows rock units having an 
important geological control on the mass movement activi-
ties. Along HKS, the Panjal Formation is sandwiched between 
the MBT and PT. The Cambrian Panjal Formation has been 
thrusted over the Miocene Murree Formation along the MBT. 
At the eastern limb of HKS, the PT marks tectonic boundary 
between Precambrian Tanol Formation and the Carboniferous-
Triassic Panjal Formation (Khan & Ali, 1994). On the other 
side along the western limb of the HKS, the PT separates the 
Precambrian Tanol Formation from the Precambrian Hazara 
Formation. While the MBT separates Jurassic-Cretaceous and 
Palaeocene-Eocene sequences in the north from the Miocene 
Murree Formation in the south. The Hazara Formation is com-
prised of slate, phyllite and shale, while the Tanol Formation is 

Figure 1. The geographical location of study area and Digital Elevation Model (DEM) of the study area
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composed of quartzite and schist. The Jurassic to Cretaceous 
sequence is comprised of carbonates, shales, and sandstones 
of Samana Suk, Chichali, Lumshiwal and Kawagarh forma-
tions. Moreover, the Palaeocene to Eocene sequence is made 
up of carbonates and shales of Lockhart, Patala, Margalla Hill 
and Chorgali formations. Shales and sandstones of the Eocene 
Kuldana and Miocene Murree formations crop out in the core 
of the HKS (Rehman et al., 2020). However, the Miocene Si-
walik Group rocks, which are dominantly sandstone, shale and 
conglomerate, are exposed at south of the HKS.

The fine-grained lithology (find-grained sandstone and 
shale) of Kuldana and Murree formations provide weak zone for 

fault localization (Mughal et al., 2018). In addition, a southwest 
plunging syncline exist in the study area, wherein the Murree 
Formation lies in the core of the syncline (Ahmed et al., 2020). 
This structural setting is responsible for the formation of a large 
water reservoir, feeding several springs and seepages at the toes 
of major sandstone layers (Niederer et al., 1989). This seepage 
also influences slope failure of rock and soil structures, lead-
ing to mass movement. Landslides has increased in the region 
due to poor mechanical properties of the rocks and get worse 
in recent times by environmental and human activities such 
as deforestation, engineering developments, and population 
growth (Neiderer & Schaffner, 1989).

Generally, the area 
has variable climatic 
conditions, mainly due 
to variations in alti-
tude, quantity of winter 
snowfall, and extent of 
snow cover. The average 
temperature is 20.09 °C  
(Fig. 3) and can exceed 
30 °C in June while it 
drops below 0 °C in Jan-
uary. The area receives 

susceptibility assessment of landslide using analytical hierarchy process and weighted overlay analysis, along n-75...

Figure 2. Geological map of the study area and historical earthquakes locations (Khan and Ali, 1994; Wadia, 1928). (Abreviations; MBT:Main Boundary 

Thrust, NT: Nathiagali Thrust, RT: Rawat Thrust, KT: Kotli Thrust, PT: Panjal Thrust, IKSZ: Indus Kohistan Seismic Zone, TPF: Tatta Pani Fault, JF: Jhelum Fault).

Figure 3. Climate Normal of the study area 1990-2017 (Source NASA)
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1320 mm of average annual precipitation in the shape of rain 
and snow; however different zones of the region receive diffe-
rent precipitation. The highest rainfall occurs in July, August, 
and September (Fig. 3). In winter, snow falls above 1200 m and 
retains above 1800 m of altitude during January and February. 

Landslides have become more common in the last few years 
and have severely caused damage to infrastructures along the 
roads. A total of 38 landslides were considered during the field 
investigation characterized by a variety of mass movements, 
including rock fall, debris fall, debris flow, debris slide, and rock-
slide. However, majority of the mass movements are complex 
landslides. Monsoon rain and snowmelt at high altitudes mainly 
trigger debris flow in the area. Debris and rockslides were not 
only observed uphill along the road but also on the opposite side 
of the road downhill towards river Jhelum. Most of the landslides 
in the study area were mainly associated with the toe erosion and 
undercutting of the recent terraces. The landslides inventory 
based on the field survey and damages caused by landslides are 
shown in Fig. 4.

3. Mater ial and methods

3.1. Data Used 

The current study includes four main stages: (1) data acquisition 
of the study area, including geological, geotechnical, topographi-
cal, environmental, and rainfall information, (2) selection of 

causative factors based on field investigation and earlier research 
practices, (3) calculation of the weight and the influencing power 
of factors in landslide occurrence and (4) finally, the generation 
of susceptibility assessment map of the study area using the AHP 
and WOA. The flowchart of the steps involved in the susceptibil-
ity assessment is given in Fig. 5.

3.2. Model Selection 

Landslide susceptibility assessment contains descriptions of the 
degree of slope movements that can affect terrain and also the oc-
currence of the landslide in a region under local ground environ-
ments (Brabb, 1985). The adoption of GIS and Remote Sensing 
in research studies made it much easier to map the susceptibility 
to landslides (Jia et al., 2010; Nasab et al., 2010; Pradhan, 2011; 
Zhang et al., 2013). To date, many researchers have undertaken to 
identify potential landslide susceptible areas over the assessment 
of accountable factors (Khan et al., 2019; Komac, 2006; Lee et 
al., 2002; Shahabi & Hashim, 2015; Süzen & Doyuran, 2004). 
The landslide susceptibility maps can be generated based on 
quantitative and qualitative methods. Statistical approaches are 
preferred in more recent research, seeking to create associations 
between the spatial distribution and control factors of a landslide. 
Because of the effectiveness of the AHP method, it has been used 
to create the pair-wise comparison of the affecting variables in 
this study. To generate landslide susceptibility maps of the study 
area, an incorporated statistical technique (AHP-WOA) and 
AHP command tool have been evaluated in ArcGIS.

Figure 4. Landslide inventory of the study area, (A) Residential area damages caused by debris and rock slide (landslide point 6 and 9 ); (B) Complex land-

slide, (C) Massive landslide on the left bank of Jhelum River (D) Retaining wall and safety railing damaged by rockfalls. (Point 8,26,25)

acta geologica slovaca, 15(1), 2023, 23–34
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3.2.1. Analytical Hierarchy Process
The AHP is the most accepted method for scal-
ing the weight of factors. It is a method based 
on decision theory requiring to compare each 
criterion from a set of choices or alternatives. It 
indicates the most accurate methodology for cal-
culating the weight of a criteria and estimation of 
relative magnitude of factors through pair-wise 
comparison with the help of individual experts 
and experience (Mehmood et al., 2021). Moreo-
ver, it indicates the relevance of a certain factor 
in landslide assessment through a statistical com-
parison. The scores given are based on reasonable 
prioritisation of the factor for inducing susceptibil-
ity of landslide and depending on the estimation 
of experts following the evaluation scale given by 
Saaty (Thomas & Doherty, 1980). The grading of 
comparative factors is done by allotting weight 
from 1 to 9, where 1 has equivalent significance and  
9 has a drastic importance of a particular factor over 
others (table 2). Although the comparisons in AHP 
are assigned by expert judgement, but still there 
could be any inconsistency found in calculations. 
The consistency is derived in AHP by coherence 

ratio (table 3), which is given by random consistency index 
(RI) (Thomas & Doherty, 1980) 

	 	     CI	 CR  =	 ––––––––	 (1)
		      RI
Where	 	

lmax – n	 CI  =	 ––––––––	 (2)
		         n	   

The consistency ratio is calculated in order to find the con-
tinuity of the pair-wise compared weights (Kolat et al., 2012). 
The uniqueness of the AHP method is that it provides CR as a 
relationship between the degree of consistency and inconsist-
ency (Chen & Lee, 2010). The suitable value of CR is 0.1 for 
all large matrices, i.e., n>5. Therefore, a CR of 0.1 or lower is of 

Figure 5. Flowchart of the methodology applied in the study.

Authors Causative factors Study area

Kamp et al. (2008)
Aspect, Elevation, Lithology, Land cover, Distance from faults, 

rivers, and roads, Slope, Tributaries, Aspect
Muzaffarabad District. https://goo.gl/maps/eMYgDfVRMHfXS9Yx

Ahmed et al. (2014)
Relief slope, Curvature, Aspect, Rain, Seismic hazard faults, 

Drainage, Normalised Difference Vegetation Index, Geology
Upper Indus watershed. https://goo.gl/maps/H79kmdmHrs1UCt1e6

Basharat et al. (2016)
Aspect, Elevation, Lithology, Land cover, Hydrology, Distance 

from Faults and Roads, Slope, Curvature
Balakot Tehsil. https://goo.gl/maps/6nYQhcwPWMRuUeD

Kanwal et al. (2016)
Slope, Aspect, Lithology, Land cover, Distance from faults, road 

and streams

Shigar and Shyok Basin in Karakoram range.  

https://goo.gl/maps/No47FAd4s5SHxeG26

Khan et al. (2018)
Slope, Aspect, Curvature, Lithology, Land cover, Distance from 

stream, faults and road network, SPI, TWI

Haramosh valley, Bagrote valley and Nagar valley

https://goo.gl/maps/aFoJaUjUZUYRBH4x6

Khan et al. (2018)
Aspect, Geology, Land cover, Slope, Distance from fault, road, 

and stream
Hunza–Nagar valley. https://goo.gl/maps/tZaYyHubWSaNVMhY

S. Ali et al. (2018)
Elevation, Slope angle, Aspect, Curvature, Lithology, Seismicity, 

Faults, Land cover, Rainfall intensity and Distance from streams

Karakoram Highway (China-Pakistan Economic Corridor).  

https://goo.gl/maps/TWRfyzPN3F878UNo6

This study
Slope, Aspect, Curvature, Lithology, Distance from faults, 

Distance from roads, and distance from streams, NDVI, Rainfall
N-75 highway (Lower Topa to Kohala bridge)

Table 1. Assessment variables frequently used by researchers in landslide susceptibility assessment (Ali et al. 2019)

Table 2. Pairwise comparison 9-point rating scale in AHP, after Saaty 

(Saaty, 2008).

Dominant 
values 

Description Explanation 

1 Equal importance Two factors contribute equally 

3 Moderate importance
Activity slightly favours one factor 

over another 

5 High prevalence 
Activity highly favours one factor 

over another 

7 Very high prevalence 
Activity is very highly favoured 

over another 

9 Extremely high prevalence
Activity is of highest possible 
degree favoured over another

2, 4, 6, 8 Intermediate values Used when compromise is needed

susceptibility assessment of landslide using analytical hierarchy process and weighted overlay analysis, along n-75...
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reliable importance (Malczewski, 1999; Mehmood et al., 2021), 
however, a CR above 0.1 requires additional evaluation on this 
statistical parameter.

3.2.2. Weighted Overlay Analysis
The current study also applied the weighted overlay analysis to 
obtain the landslide susceptibility assessment maps. This method 
usually uses individual factor thematic raster layers that are 
overlaid to create a composite map based on their weights. The 
weights are provided based on the individual factor's compara-
tive importance (Saaty, 1988). The thematic layers of all causing 
variables were added using the ArcGIS weighted overlay tool for 
landslide susceptibility assessment mapping.

4. Landslide susceptibility mapping

The preliminary and most significant principle for carrying 
out the research objective is the collection and development 
of attributes which have been identified as conditional factors, 
which area is considered responsible for making the study area 
susceptible to landslides. 

 4.1. Assessment Factors 

Recent developments in GIS programmes and improved com-
putational capability make it feasible to use a considerably large 
amount of independent parameters in data-driven landslide 
susceptibility assessment. Landslides are triggered by various 
external and internal factors (Mehmood et al., 2021). Table 1 
reports the most frequently used causative factors by various 
researchers for landslide susceptibility assessment.

For the current study, a combination of significant morpho-
logical factors of slope instability together with geographical 
features and natural vegetation were selected. Geomorphic fac-
tors (slope, aspect, curvature) and rainfall have a direct relation 
with landslide occurrence. Increasing urbanisation in the study 
area negatively affects the natural vegetation cover. The destruc-
tion of root system enhances weathering and degradation of the 

mechanical properties of the bedrock and soil deposits. Hence 
normalised difference vegetation index has been chosen one of 
the causative factors in the study. The parameters distance from 
faults, roads, and streams has a significant influence in this area. 
Excavation of slopes, particularly the toe of slope for building 
and widening of the existing roads, construction work along 
the road, and the vibration of heavy transport is a common 
phenomenon in this area. This weakens the existing state of 
stability, stresses, and encourages landslides. The water level 
of Jhelum River, located on the right side of the highway, rises 
in summer due to the heavy rainfall, snow, and glaciers melt-
ing at the higher altitudes of the Himalaya Mountains, which 
increase the flow and under-cutting of rocks and sediments by 
river water. Several main and minor faults (Fig. 2) are located 
in the study area. Most of the study area is made of weak (low 
strength) lithologies such as shale, conglomerate and slate, 
which may facilitate landslide occurrence during fault activa-
tion. Therefore, lithology, distance to fault, roads, and streams 
have been considered as causative factors that have significant 
role in the occurrence of landslides. 

As previously stated, causative factors can be used as driving 
factors in forecasting potential outbreaks of landslides (Conforti 
et al., 2013); however, there is no specific principle for choosing 
these factors (Ayalew & Yamagishi, 2005). In the present study, 
the causative factors were chosen amongst those widely reported 
in the literature for landslide susceptibility assessment. Field 
investigation and spatial analysis were carried out to determine 
the influence of these parameters on the landslide distribution 
in the study area. The nine most relevant factors influencing 
stability selected in this study include (Fig. 6):

(i) Slope (°): Slope is the indicator of steepness or the grade of 
inclination of a characteristic compared to the horizontal plane. 
Slope map was created from DEM of the area using GIS spatial 
tool since slope is linked directly to the landslide occurrence and 
is often used to generate landslide susceptibility maps (Khan et 
al., 2019; Rahman et al., 2019; A Yalcin et al., 2011);

(ii) Aspect: An aspect map indicates the direction of the 
slope face (Li et al., 2021). An aspect value of 0 implies the north 
facing of a slope. The aspect map was generated from the study 
area DEM using the ArcGIS spatial analysis tool; 

(iii) Curvature (m-1): A map of curvature was also gener-
ated through DEM. A curvature positive value indicates convex, 
negative value indicates concave and value of zero indicates flat 

Table 3. Random index values

n 1 2 3 4 5 6 7 8 9 10

RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Table 4. Pair-wise comparison 9-point rating scale in AHP, after Saaty (Saaty, 1988).

Factors Slope Aspect Curvature Lithology NDVI DFF DFR Rainfall DFS

Slope 1.0 7.0 4.0 5.0 4.0 3.0 4.0 5.0 6.0

Aspect 0.14 1.0 2.0 3.0 4.0 5.0 6.0 6.0 7.0

Curvature 0.25 0.5 1.0 2.0 3.0 4.0 4.0 5.0 6.0

Lithology 0.2 0.33 0.5 1.0 2.0 3.0 3.0 5.0 4.0

NDVI 0.25 0.25 0.3 0.5 1.0 2.0 3.0 4.0 5.0

DFF 0.33 0.2 0.25 0.33 0.5 1.0 2.0 2.0 3.0

DFR 0.25 0.17 0.25 0.33 0.33 0.5 1.0 2.0 3.0

Rainfall 0.2 0.17 0.2 0.2 0.25 0.5 0.5 1.0 2.0

DFS 0.17 0.14 0.17 0.25 0.2 0.33 0.33 0.5 1.0

Normalized Difference Vegetation Index (NDVI), Distance from Faults (DFF), Distance from Roads (DFR), Distance from Streams (DFS)

acta geologica slovaca, 15(1), 2023, 23–34
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surface (Ahmed et al., 2014). During heavy rainfalls, the water 
retains at concave and convex slopes for a long time and facili-
tates landslide activities. High negative or positive values direct 

the higher probability of landslide activity whilst the landslide 
probability in flat area is very low (Lee & Talib, 2005; Mersha 
& Meten, 2020);

Figure 6. Thematic maps of the nine selected landslide causative factors. 

susceptibility assessment of landslide using analytical hierarchy process and weighted overlay analysis, along n-75...
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(iv) Distance from Fault (DFF): Areas close to active faults 
are more susceptible to landslides (Li et al., 2021; Rahman et al., 
2019). The DFF is extracted from the 1:50,000 geological map 
of the area and fault lines are buffered at the interval of 100m 
in ArcGIS 10.3. The DFF is divided into five classes, including; 
<100, 100–200, 200–300, 300–400 and >400;

(v) Lithology: Lithology exerts a crucial role in slope stability 
(Khan et al., 2019; Yalcin & Bulut, 2007). Lithological map of 
the study area was prepared from the 1:50,000 geological map 
and field investigation of the area. The lithological details of the 
area are described in the section “Study area”.

(vi) Normalised Difference Vegetation Index (NDVI): 
NDVI is a significant variable in landslide susceptibility assess-
ment studies (Elkadiri et al., 2014; Li et al., 2020). In general, 
the NDVI value varies from –1 to 1; the heavier the vegetation 
cover, the greater the NDVI value. The following formula can 
determine the value of the NDVI:

		
NIR – Red	 NDVI  =  ––––––––––––– 		  (3)

		  NIR + Red

where NIR and Red stand for the spectral reflectance meas-
urements achieved in the Red (visible) and near-infrared re-
gions, respectively. The NDVI map was generated from Land-
sat-8 Imagery downloaded from Earth explorer by USGS  
(https://www.usgs.gov/landsat-missions); 

(vii) Distance from Road (DFR): Road network in the moun-
tainous regions impacts on slope stability. Road cuttings and 
other anthropogenic activities destabilise the rock masses, which 
ultimately results in landslides (Kanwal et al., 2017; Promper 
et al., 2014). The road network of the region is acquired from 
the Map Cruzin website (https://mapcruzin.com). The DFR 
is buffered at an interval of 150 meters and classified into five 
classes in ArcGIS 10.3 software. The classes are <150, 150–300, 
300–450, 450–600, and >600;

(viii) Distance from Streams (DFS): The influence of the 
stream also has key role in destabilising the slope geometry 
(Akgün & Türk, 2011; Mersha & Meten, 2020). It includes the 
erosion of material from the toe of the slope and the saturation of 
sliding material. The DFS is generated on ASTER DEM by using 
Arc-Hydro tools. Buffering at the 400-meter interval was pre-
pared to know the effectiveness of streams on landslide activities; 

(ix) Rainfall: Rainfall is a crucial triggering factor for all kinds 
of landslide occurrence (Mersha & Meten, 2020). Data picked 
up from Pakistan Metrological Department (PMD, 2019) for 
the year 2019 were interpolated by means of Inverse Distance 
Weighted (IDW) to calculate the area's rainfall rate. 

The maps of the causative factors were developed using  
ArcGIS 10.3 software and are shown in Fig. 6.

4.2. Modelling Approach 

Selection of the causative factors has revealed a number of impor-
tant parameters that are possibly essential in the development of 
landslide susceptibility assessment. It is fundamental to integrate 
them to drive a single numerical value for susceptibility assess-
ment; otherwise, they are individual parameters that provide 
distinct indications.

 4.3.Assigning Weights 

In the multi-parameter analysis like landslide susceptibility 
assessment, one of the fundamental challenges is evaluating 
each factor’s relative value or weight and its influence compared 
to other factors. This is an issue requiring human judgement 
augmented by mathematical instruments. As all causative fac-
tors discussed till now cannot be weighted correspondingly for 
the susceptibility assessment, a weighted method must be used 
where the comparative significance of the factors determines 
the weightage. For this purpose, AHP was adopted in this study.

One of the key advantages of adopting AHP is that it reorgan-
ises the complexity of data set by the hierarchy with a pair-by-pair 
correlation between different variables, hence reducing weighing 
error while maintaining consistency in different data processing. 
Other benefit of AHP is the validation of pair consistency. How-
ever, this method is based on expert judgement, and ranking of the 
causative factors is therefore a minor disadvantage of the process. 
However, many researchers have used the AHP method in their 
studies to assess landslide susceptibility mapping (Basharat et al., 
2016; Kamp et al., 2008; Pourghasemi & Rossi, 2017; Rahim et 
al., 2018; Shahabi & Hashim, 2015). Researchers have mainly 
used AHP to allocate the weighting variables for landslide causa-
tive factors, conversely in this study AHP has been adopted for 
both weighting factors and landslide susceptibility assessment 
based on causal parameters. Each causative factor was assigned 
weight over the other variable by the pair-wise judgement of the 
AHP (table 4). The obtained weight was then measured using 
the methodology proposed by Saaty (Saaty, 2008).

The AHP calculations were carried out in Microsoft Excel 
using the following steps of (Bunruamkaew, 2012): 

Add the quantities in the pair-wise matrix's columns.
			   n

		  Cij  =  ∑ Cij			   (4)
		              i=1

To obtain a normalised pair-wise matrix, the matrix parameter 
was divided by the column's sum, respectively.

			       
Cij		  Aij  = ––––––––– 			   (5)

			   ∑ n   
i=1 Cij

To obtain each criteria weight, the summation of the matrix's 
normalised columns was divided by the amount of parameters 
applied.

			   ∑ n   
i=1 Cij

		  Wij  = ––––––––			   (6)
			          n

Where n is the number of parameters and Cij is the pair-wise 
matrix, Aij is the normalised value and Wij is the criteria weight.

The criteria weights of the causative factors are the follow-
ing: slope 0.360, aspect 0.192, curvature 0.137, lithology 0.095, 
NDVI 0.075, DFF 0.051, DFR 0.04, rainfall 0.029, and DFS 
0.022 % respectively.

The consistency ratio is the measurement of judgement con-
sistency. In this study, the calculated CR is 0.088, which is below 
0.1. The pair-wise comparison ratio specifies a good consistency 
level, standing sufficient to distinguish the factors weight. The 
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revision of the preferences matrix is needed only when the CR 
value is higher than 0.1. 

4.4. �Landslide Susceptibility map using AHP 
Command Tool

After the calculations of the assigned rank to the causative factors, 
the landslide susceptibility assessment map was prepared using 
the AHP command tool in ArcGIS. For the generation of landslide 
susceptibility assessment map, all the causative variables were 
added according to criteria weightage level in the AHP tool. The 
final map of landslide susceptibility was classified into five classes, 
including very low (10 %), low (14 %), moderate (19 %), high (39 
%), and very high (18 %) of the overall research area (Fig. 7B).

4.5. �Landslide Susceptibility map using Weighted 
Overlay Analysis

The weight calculated by AHP were classified according to their 
importance in landslide susceptibility, in which slope is given the 
highest weight of 36 % and DTS is assigned the lowest weight 

with 2 %. After applying the AHP process to the data maps of 
all the causative factors, the resulting map was created with the 
help of the spatial analysis tool of ArcGIS 10.3 using the weighted 
overlay analysis. The generated map was then classified into  
five classes very low (14 %), low (07 %), moderate (49 %), high 
(17 %), and very high (13 %) as shown in Fig. 7A.

4.6. Area under Curve

The Area under Curve (AUC) technique is being used to predict 
the validity of the landslide susceptibility assessment map. The 
area under the curve is a graphical representation of binary oper-
ating classes determining project accuracy. AUC was generated 
by comparing the generated map using ArcGIS software and the 
GPS landslide points taken in the field investigation of the study 
area. A total of 38 sites were selected for validation purposes, 
showing different types of landslides. These points are taken as 
the true-positive rate compared with the maps developed by the 
AHP command tool and the WOA in ArcGIS as the false-positive 
rate. Graphical representation of AUC explains the accuracy of 
mapping. The area under curve shows that the map obtained 

with AHP command tools gives a higher ac-
curacy value of 0.87 compared to WOA 0.81 
(Fig. 8), which is above the minimum value of 
0.6 consequently and is considered accurate 
for landslide susceptibility mapping. 

5. Discussion 

Landslide is a complex process prompted by 
several external triggering and internal geo-
logical parameters (Mehmood et al., 2021; 
Raghuvanshi et al., 2014). So far, researchers 
have undertaken to identify potential land-
slide susceptible areas over the assessment of 
these factors (Basharat et al., 2016; Khan et al., 
2019; Komac, 2006). Statistical approaches 
are preferred in more recent research, seek-
ing to create associations between the spatial 
distribution and control factors of a landslide 
(Ali et al., 2019). Many researchers used an 
AHP-based model to prepare landslide sus-
ceptibility maps (Ahmed, 2015; Arizapa et 
al., 2015; Basharat et al., 2016; Kamp et al., 
2008; Park et al., 2013; Pourghasemi & Rossi, 
2017; Rahim et al., 2018; Shahabi & Hashim, 
2015; Yalcin, 2008). In some studies, the 
comparison of AHP based model with other 
methods (Pourghasemi & Rossi, 2017; Sha-
habi & Hashim, 2015; Yalcin, 2008) proved 
to be more accurate and precise. The AHP-
based model has been disparaged due to its 
expert-judgment-based subjective method. In 
fact, expert judgement is necessary in track-
ing landslides hazard evaluation, and the ap-
plication of this method can vary from one 

Figure 7. Landslide susceptibility map using (A) Weighted Overlay Analysis (WOA) and (B) 

Analytic Hierarchy Process (AHP) command tool.

Figure 8. Area under Curve graph of the study area based on AHP command tool (A) and 

Weighted Overlay Analysis (B).
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expert to another, representing a disadvantage with respect to 
obtained information. Conversely, data driven methods are 
also powerful in landslide susceptibility mapping and contain 
less subjectivity. Therefore, it is important to analyse the spatial 
relationship between the landslide conditioning factors and 
landslide locations. We employed spatial analysis to weight all 
key parameters in order to reduce the possibility of errors due 
to the expert's intellectual limitations. In this study, the two 
methods AHP command tool and WOA in ArcGIS have given 
reasonable results. However, the AUC graph shows that the 
map obtained with AHP command tools has a higher accuracy 
value of 0.87 compared for WOA 0.81. The results obtained by 
the two models given 6 percent of accuracy difference, which 
demonstrates AHP was more accurate in this example.

Regardless of the optimistic results and the model's adapt-
ability, there will always be an inconsistency in any landslide 
susceptibility mapping due to the uncertain inherency in land-
slide susceptibility mapping parameters. Expert opinion and 
judgments are employed to provide weight to the causative pa-
rameters, which may differ from the absolute values. The assess-
ment of specific weights also necessitates unyielding efforts. The 
absence of high-resolution images, DEMs, and research tools, 
as well as large-scale geology and soil maps, and particularly 
the lack of publicly accessible landslide data, were key limits in 
selecting the landslide parameter data. Therefore, the models 
used to generate the landslide susceptibility maps in this study 
are of reference importance for comparable studies. In order to 
discover the most suitable model to generate landslide suscep-
tibility maps, novel hybrid models and new approaches should 
be considered for future modelling.

6. Conclusions 

Landslides are the high threat to the socio-economic environ-
ment of Northern Pakistan, especially the Himalaya region. 
Despite of high threat, no recorded data in most areas on land-
slide susceptibility are available to assess and mitigate landslide 
hazards. This study presents landslide susceptibility maps for 
part of the N-75 highway in the northeast of the capital territory 
of Islamabad, Pakistan. 

Landslide susceptibility maps were prepared using ArcGIS 
involving multiple techniques: literature review, remote sensing, 
and field investigations. Nine causative factors were selected, and 
weights were assigned using AHP method. Thematic layers of 
these variables were merged into a single assessment index using 
AHP command tool and WOA in ArcGIS.

The results based on AHP command tool indicate that 57 % 
(and 30 % for WOA) of the study area is under high to very high 
landslide susceptibility. The most influential parameters control-
ling the spatial distribution of landslides are the geomorphic 
factors, the fractured and weathered lithology, active faults and 
extreme weather conditions.

The AUC technique was used to evaluate the accuracy of 
the susceptibility maps, which shows that the map obtained 
with AHP command tools gives a higher accuracy value of 0.87 
compared to WOA (i.e. 0.81). Based on the obtained results, 

it is recommended that all types of future development along 
the highway should be completely prohibited or done with all 
precautionary measures in the high to very high susceptibil-
ity zones. 
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