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1. Introduction

Nowadays, due to climate change, heavy rainfalls are becoming 
more frequent, which causes the landslides occur more often. In 
many parts of the world they represent significant environmental 
threat. In Slovakia, there are many works published recently 
regarding landslide activity, e.g. Liščák et al. (2010), Dostál et al. 
(2014), Šilhán et al. (2014), or Putiška et al. (2015). That is why 
we experience the full development of methods that can predict 
where the landslide could occur in the future. The most important 
step is to analyze the factors of their origin. The aim of efforts of 
many experts is to create the forecasts, according to which we 
would be able to predict the origin and development of landslides 
in the future with a high probability. One of the last proven meth-
ods is assessment of the landslide hazard using Neural Networks. 
The theoretical base of this method is sufficiently discussed in the 
literature. The Neural Networks are a computational method of 
data analysis. It is an extension of traditional statistical methods 
such as regression (White, 1989), and the approximation function 
(Baum & Haussler, 1989; Hertz et al., 1991).

Neural Networks (NN) is a massive parallel tool that tends to 
preserve experimental knowledge and its further use. It mimics 
the human brain in two aspects: 1. knowledge is collected during 
learning; 2. connections between neurons (synaptic weights - SV) 
are used to store the knowledge. This is one of the NN definitions 
accepted by NN community and was inspired from biological 
systems. Crudely saying it is brain simulation. On first impres-
sion, this highly abstract discipline finds many applications in 
practice and becomes a tool for solving problems in a wide range 
of professional uses. One of the most important features of the 
NN is that it works as a universal functions approximator. This 

approach is useful for systems with extremely complex, or almost 
impossible description. In such a situation when we have data 
that enter the system, and the outputs corresponding to them, 
then we can use a suitable NN and try to teach it to behave like 
system using training data (mentioned inputs and outputs). This 
is a very important point, as it determines the application of NN 
in practice (Hertz et al., 1991). It is possible to find out a sufficient 
number of examples where NN was used to evaluate landslide 
hazards in literature. For instance, Aleotti et al. (1998) applied 
NN in northern Italy for the classification of landslides according 
to the degree of hazard. Macchi & Deravignone (2006) published 
study which described the implementation of the methodology 
of neural networks in the GIS environment. For the purpose of 
artificial neural networks application it was necessary to develop 
specific software applications. The aim was to create a kind of 
“bridge” between GIS platforms and simulators of NN. Ermini et 
al. (2005) used an artificial neural network for landslide hazard as-
sessment. They used two types of neural networks: a Multi-Layer 
Perceptron (MLP) and probabilistic neural network (PNN). 
Pradhan & Lee (2009) in Malaysia (Penang) applied NN for as-
sessing landslide risk, when feed-forward neural network was used 
with back propagation error learning algorithm. Results of study 
were maps of landslide hazard degree determination. Nowadays, 
the possibility of using computing technologies experiences full 
development, together with increasing use of geographic infor-
mation systems (GIS), which are inevitable in the application of 
NN for assessing landslide hazard.

	 The Žilina region (Fig. 1) is located in the northern part of 
Slovakia. Geologically, the area is composed of (from the north-
west to the southeast) Silesian, Magura, and Oravic units. The 
study was focused predominantly to the Magura Unit which 
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contains the Rača, Bystrica, and Krynica subunits and forms 
about 1 km wide strip along the northern edge of the Pieniny 
Klippen Belt (Potfaj et al. 2003). 

2. Application of Neur al Networ k

Application of NN for remote sensing (RS) data interpreta-
tion was motivated by the ability to efficiently handle very large 
amounts of data from various sources. NN in the simplest sense 
transform input to output, thus it belongs to the same class of 
techniques such as automatic recognition of symptoms, regres-
sion, spectral and textural classification. Due to importance of 
these techniques the increasing tendency of using NN in RS is 
not a surprise.

The rapid increase of NN applications in RS is mainly a conse-
quence of their skills: working more accurately and much faster 
than other techniques like e.g. statistical classifiers, especially 
when the feature space and complex data sources have different 
statistical distribution. Thus it is clear that one of the main ad-
vantages of the NN is the ability to effectively handle the large 
amount of RS data.

For landslide hazard assessment multilayer forward neural 
network, the so-called Multi-Layer Perceptron (MLP) and the 
learning algorithm of back propagation error were used, appro-
ach by Pradhan & Lee (2009). The MLP, as the name implies, 
consists of a series of layers, each consisting of a set of nodes 
(neurons). Within the feed-forward neural network only forward 
connections between neurons exist. Each neuron of one layer 
sends signals to each neuron of the next layer. Connections to 
the previous layer do not exist.

A neural network consists of a number of interconnected 
nodes. Each node is a simple processing element that responds 
to the weighted inputs it receives from other nodes. The arrange-
ment of the nodes is called network architecture (Fig. 2). The 

receiving node sums the weighted signals from all the nodes that 
were connected with in the preceding layer. Formally, the input 
that a single node receives, is weighted according to equation  (1):

		
 			   (1) 

where wij represents the weights between nodes i and j, and oi 

is the output from node j, according to:

oj = f (netj) 				    (2)

The function f is usually a non-linear sigmoid function that is 
applied to the weighted sum of inputs before the signal propa-
gates to the next layer. One advantage of a sigmoid function is 
that its derivative can be expressed in terms of the function itself:

f´(netj) = f (netj)(1 - f (netj))		  (3)

The network used in this study consisted of three layers. The 
first layer is the input layer, where the nodes were the elements 

Fig. 1: Geographic location of the study area

Fig. 2: Basic architecture of neural network
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of a feature vector. The second layer is the internal or “hidden” 
layer. The third layer is the output layer that presents the output 
data. Each node in the hidden layer is interconnected with the 
nodes in both the preceding and following layers by weighted 
connections (Atkinson & Tatnall, 1997). The error, E, for an 
input training pattern, t, is a function of the desired output.

 				  
 	 			   (4)

The error is propagated back through the neural network and is 
minimized by adjusting the weights between layers. The weight 
adjustment is expressed as:

	 (5)

Where h is the learning rate parameter (set to h = 0.01 in 
this study), d j is an index of the rate of change of the error, and 
a is the momentum parameter (set to a = 0.01 in this study). 
The factor dj is dependent on the layer type. For example, for 
hidden layers:

		  (6)

and for output layers:

		  (7)

This process of the feed-forward signals and the back-propagat-
ing error is repeated iteratively until the error of the network as a 
whole is minimized or reaches an acceptable magnitude. Using 
the back-propagation training algorithm, the weights of each 
factor can be determined and may be used for classification of 
data (input vectors) that the network had not seen before. Zhou 
(1999) described a method for determining the weights using 
back-propagation. From equation (2), the effect of an output, oj, 
from a hidden layer node, j, on the output, ok, from an output 
layer (node k) can be represented by the partial derivative of ok 
with respect to oj as:

		
	 	 (8)

Equation (8) produces both positive and negative values. If the 
effect’s magnitude is all that is of interest, then the importance 
(weight) of node j relative to another node j0 in the hidden layer 
may be calculated as the ratio of the absolute values derived 
from equation (8):

	 (9)

We should mention that wj0k is simply another weight in wjk 
other than wik. For a given node in the output layer, the results of 
equation (9) show that the relative importance of a node in the 
hidden layer is proportional to the absolute value of the weight 

connecting the node to the output layer. When the network 
consists of output layers with more than one node, then equation 
(9) cannot be used to compare the importance of two nodes in 
the hidden layer:

			  (10)

		 (11)

Therefore, with respect to node k, each node in the hidden 
layer has a value that is greater or smaller than unity, depend-
ing on whether it is more or less important, respectively, than 
an average value. All the nodes in the hidden layer have a total 
importance with respect to the same node, given by:

				    (12)

Consequently, the overall importance of node j with respect 
to all the nodes in the output layer can be calculated by:

			   (13)

Similarly, with respect to node j in the hidden layer, the nor-
malized importance of node j in the input layer can be defined by:

		  (14)

The overall importance of node i with respect to the hidden 
layer is:

			   (15)

Correspondingly, the overall importance of input node i with 
respect to output node k is given by (Pradhan & Lee, 2009):

			   (16)

Neural network gets its ability to transform input data into 
output during the learning process. Learning can be defined as 
a process in which the parameters of neural networks (wij and 
wjk - synaptic weights) vary based on some rules. The nature of 
these rules, the effect of altering synaptic weights, determines 
the type of learning. Under the learning of NN we understand 
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adaptation of NN that in the end of the learning will be the 
bearer of knowledge gained during learning. Learning is a 
fundamental and essential characteristic of neural networks. 
As already mentioned, the most used learning algorithm for 
multilayered NN is a method of back-propagation error (back-
propagation training algorithm), whose authors are Rumelhart 
et al. (1986). The algorithm consists of three stages: the feed-
forward spread signal between neurons connections, back-
propagation of error and modification of synaptic weights so 
as to minimize the amount of error between the desired and 
actual output of the network. Neural network simulation took 
place in the neural networks module in the environment of the 
Matlab software package.

To verify the results of Artificial Neural Network (ANN) 
application and comparison with two other statistical methods 
are used: bivariate and multivariate which are constructed as in 
the study of Tornyai & Dunčko (2013).

The methodology of landslide hazard assessment using statis-
tical methods in a GIS environment is based on an appropriate 
choice of the factors affecting the stability of slopes. Statistical 
processing of landslide hazard assessment is based on the geo-
logical principle of actualism that landslides will occur in places 
where they occurred in the past respectively in present under 
the similar activation conditions. 

Selected factors, which influenced slope movements, are 
processed into a form of parametric maps and like this they 
are entering into the process of statistical evaluation using map 
algebra in GIS/Matlab environment. 

According to the chosen statistical method a comparison 
of parametric maps factors with the landslide inventory map 
of model area follows. Conclusions resulting from statistical 
comparisons are extrapolated to the whole area of the region 
and the result is a prognostic hazard map.

3. Input par a meters

Model area of Žilina region has a total area of 3132.2 square 
kilometers. The region was just administratively allocated. 
Four input factors that most influence the instability of slopes 
were evaluated. Each of the factors was processed into a form 
of parametric map in ArcGIS environment. Subsequently, the 
input parameters were extracted into the TIFF format and 
entered MATLAB environment. Evaluated parameters are: 
geological conditions, slope angle, slope aspect, the current 
land-use, and the registered slope deformations. Parametric 
maps were constructed from four vector maps processed at a 
scale of 1:10 000.

3.1 Geological conditions

Geological setting of the area is one of the most important factors 
affecting the formation and evolution of slope deformations. Geo-
logical structure is characterized by rocks of the Magura Group of 
the Outer Western Carpathians and includes Rača Unit (north), 
Biele Karpaty Unit and Bystrica - Orava Unit (in the south). In 

Category Genetic type Lithological characteristics Area [km2] Area [%]

1 anthropogeneous sediments fills, heaps and dumps 1.87 0.06

2 fluvial sediments alluvial soils, sandy to gravelly soils of valley and mountain streams 393.58 12.57

3 proluvial sediments clay, loam, gravels of proluvial fans 50.87 1.62

4 slope sediments lithofacial undifferentiated deluvium and debris 455.93 14.56

5 chemogene-organogenic sediments freshwater limestone, travertine, tufa, calcareous sinter 2.30 0.07

6 organic sediments peat, peat humus clay 1.79 0.06

7 Neogene deposits compacted gravel 29.10 0.93

8
carbonates of Central Carpathian 

Palaeogene Basin
breccias, conglomerates, sandstones, siltstones, limestones 0.12 0.00

9
siliciclastic deposits of Central 

Carpathian Palaeogene Basin
claystones prevail over sandstones and conglomerates 91.08 2.91

10
siliciclastic deposits of Outer Western 

Carpathians
claystones, siltstones, sandstones 559.66 17.87

11 Pieniny Klippen Belt dark claystone, marl, spotted marl and limestone marl 253.87 8.11

12
limestones and dolomites of the Tatric, 

Fatric, and Hronic units
limestones, dolomites 1004.88 32.08

13 siliciclastic deposits of Tatric Unit
red sandstone, sandy dolomite and clay-slate, conglomerates, 
feldspathic offal, arkose, suborder sandy shale

4.37 0.14

14 Tatric crystalline basement granites, granodiorites, paragneiss 282.86 9.03

Tab. 1 Spatial distribution of lithological units
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the Rača Unit (from bottom to top) Beloveža Formation (mainly 
claystones) overlies Soláň Formation (mainly sandstones) and 
is overlain by Zlín Formation (mostly claystones). The Bystrica 
Unit has similar stratigraphic sequence, except of the uppermost 
member - Bystrica Member containing more claystones than the 
Zlín Member in the Rača Unit.

Physical and mechanical characteristics due to the litho-
logical composition of the rock environment are an important 
factor affecting the stability of the slope. Reclassified map of 
engineering geological conditions contains 14 lithological 

units (1 – anthropogeneous sediments; 2 – fluvial sediments; 
3 – proluvial sediments; 4 – slope sediments; 5 – chemogenic-
organogenic sediments; 6 - organic sediments; 7 – Neogene 
deposits; 8 – carbonates of Central Carpathian Palaeogene Ba-
sin; 9 – siliciclastic deposits of Central Carpathian Palaeogene 
Basin; 10 – siliciclastic deposits of Outer Western Carpathians; 
11 –Pieniny Klippen Belt; 12 -limestones and dolomites of 
the Tatric, Fatric, and Hronic units; 13 – siliciclastic deposits 
of Tatric Unit; 14 – Tatric crystalline basement; Fig. 3a). The 
cell size is 10×10 m.

Fig. 3: Input parametric maps

a) map of lithological units (1 – anthropogeneous sediments; 2 – fluvial sediments; 3 – proluvial sediments; 4 – slope sediments; 5 – chemogenic-organo-

genic sediments; 6 - organic sediments; 7 – Neogene deposits; 8 – carbonates of Central Carpathian Palaeogene Basin; 9 – siliciclastic deposits of Central 

Carpathian Palaeogene Basin; 10 – siliciclastic deposits of Outer Western Carpathians; 11 – Pieniny Klippen Belt; 12 -limestones and dolomites of the Tatric, 

Fatric, and Hronic units; 13 – siliciclastic deposits of Tatric Unit; 14 – Tatric crystalline basement); b) landuse map; c) aspect; d) slope angle map; e) landslide 

inventory map
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The most widespread dissemination of the model area (32%) 
represent limestones and dolomites. Slope sediments, which 
can be described as the most susceptible to formation of slope 
deformations represent more than 14% of the model area  
(Tab. 1).

3.2 Current landscape structure

The current landscape structure reflects current land use, includ-
ing vegetation cover. This parameter is very dynamic, subject to 
relatively rapid changes in time, and therefore it is necessary to use 
the most up to date information during processing. Clearly most 
reliable sources are up to date aerial and satellite images, respec-
tively orthophoto maps of model area. For this purpose Google 
maps were used and manually converted to landscape structure.

In the model area 8 elements are selected (Fig. 3b) of the cur-
rent landscape structure: (1) road network, (2) settlement, (3) 
meadows, (4) arable land, (5) forests, (6) gardens, (7) rivers 
and (8) railway network. Spatial distribution of elements of the 
current landscape structure shows that the largest part of the 
model area is covered by forests (60.78%), meadows (19.21%) 
and arable land (12.36%) (Tab. 2).

3.3 Aspect map

Slope aspect factor is often taken into account in relation with 
weather and meteorological conditions in the study area. These 
represent e. g. prevailing wind direction, which together with 
the cumulated sunlight significantly affects evapotranspiration,
soil moisture status and so on (Pauditš, 2005).

Parametric map of slope aspect (Fig. 3c) presents a continu-
ous data field indicating the value of a certain angle from one of 
the cardinal (mostly from the north), in a counter-clockwise. 
Slope aspect was reclassified to 8 semiquadrants. Class nine 
represents a territory without reference to the cardinal points, 
planar (flats) areas.

In the model area slope aspect is approximately equally dis-
tributed (Tab. 3). We can see very little superiority of slopes 
facing northwest.

3.4 Slope angle map

Slope angle is one of the most important morphometric param-
eters affecting slope instability. Slope angles are expressed in 
degrees (range 0 – 90°, Fig. 3d). The slope angle in combination 
with other is a parameter significantly influencing the slope 
stability conditions.

For classification of slopes a methodology by Hrašna (1986) 
was used, which is usually used in the engineering geological 
mapping. Slopes are divided into nine categories shown in  
Tab. 4 in column interval.

More than 28% of the area is formed by slopes from 20 to 31 
degrees. The second most common category are slopes with  
11 to 17 degrees of inclination and makes up more than 20 % of 
the territory (Tab. 4). Slopes, which can be considered as highly 
susceptible to landslides (categories 4, 5, 6 and 7) cover more 
than 46 % of the area.

3.5 Landslide inventory map

In the model area of the Žilina region map of slope deforma-
tions represents binary dependent (dichotomic) variable which 
in the process of statistical analysis all input parametric maps 
are compared with. Binary raster map of slope deformations 
contains only Boolean values 0 and 1 (false / true), where the 
value 1 represents the existence of a landslide in the cell grid 
and the absence of landslide represents the value 0. Landslides 
were vectorized as polygons without distinction of main scarps 
which were not identified in originally used source, so as whole 
landslide bodies (Bednarik & Pauditš, 2010).

Currently 11.96% of area is affected by slope deformations, 
representing an area of 374.92 square kilometers (Fig. 3e). For the 
calculation of landslide hazard active landslides were used, which 
cover an area of 22.37 square kilometers (Grman et al., 2011).

4. R esults and discussion

After processing all input parametric maps, they were exported 
to tiff raster format. In this format, they entered MATLAB 
environment. The training and testing group was selected 
randomly. The training sample was made up of inputs and to 
them pertinent outputs. One subset of the data set contains 
the combination where the result is always a value of 1, present 
landslide (active landslides), while the second part contains a 

Category Interval Area [km2] Area [%]

1 (flat) (–1) 4.65 0.15

2 (N) (0–22.5), (337.5–360) 401.98 12.83

3 (NE) (22.5–67.5) 402.48 12.85

4 (E) (67.5–112.5) 377.09 12.04

5 (SE) (112.5–157.5) 362.80 11.58

6 (S) (157.5–202.5) 383.59 12.25

7(SW) (202.5–247.5) 400.22 12.78

8 (W) (247.5–292.5) 391.39 12.50

9 (NW) (292.5–337.5) 408.06 13.03

Tab. 3  Spatial distribution of slope orientation

Category Area [km2] Area [%]

1 (road network) 37.59 1.20

2 (settlement) 186.06 5.94

3 (meadows) 601.71 19.21

4 (arable land) 387.15 12.36

5 (forests) 1903.79 60.78

6 (gardens) 0.63 0.02

7 (rivers) 10.65 0.34

8 (railway network) 4.70 0.15

Tab. 2  Spatial distribution of present land-use
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set of data with the result of 0, no landslide area (stable area). 
Using the back propagation algorithm neural network in MAT-
LAB was trained.

	 Artificial neural network showed that, a suitable combination 
of the conditions for landslides occurrence represents siliciclastic 
deposits of Outer Western Carpathians (category 10 in Tab. 1) 
in the area of pastures, northwest oriented with slope from 9 to 
15°. In Tab. 5 spatial distribution of susceptibility degree classes 
and slope deformations in them can be seen. From the table it 
is visible, that the neural network has identified more than 69 
% of the area with very low and low degree of landslide hazard. 
Favorable conditions for the formation of slope deformation, 
with high and very high degree of landslide hazard pointed to 
less than 18% of the area.

For comparison, bivariate statistical analysis showed that the 
most susceptible ones are slope sediments, with a slope of 7° to 
11° in the forest with slopes oriented to the south. Similarly, the 
multivariate analysis identified the slopes inclinations from 7° 
to 11 °, oriented to the north used as gardens as most vulnerable 
to slope deformation. From Tab. 6 it can be concluded, that the 
bivariate analysis shows spatial distribution of susceptibility 
degree classes very equally. Each class takes up about 20% of 
the area. In Tab. 7 multivariate analysis indicates more than 52% 
of the area with very low and low degree of landslide hazard. 
Favorable conditions for the formation of slope deformation, 
with high and very high degree of landslide hazard, are shown 
in more than 31 percent of the area.

The ANN has many advantages compared to bivariate and 
multivariate statistical analysis. The ANN method is independ-
ent of the statistical distribution of the data and there is no need 
of specific statistical variables. Compared with the statistical 
methods, neural networks allow the target classes to be defined 
with much consideration to their distribution in the correspond-
ing domain of each data source (Lee et al. 2004). The disadvan-
tage of this method is the high technical and time complexity of 
the computer operations.

The resulting landslide hazard assessment has been prepared 
using prognostic raster maps with basic cell size of 10 to 10 m. 
Final dividing into liability classes took place an established 
“traffic light” system where 5 classes were distinguished: very 
low, low, medium, high and very high degree of landslide hazard. 
The resulting map constructed using ANN is shown in Fig. 4a. 
Map constructed using bivariate and multivariate analysis is 
shown in Fig. 4b and 4c.

Category Interval [°] Area [km2] Area [%]

1 (< 2) 234.14 7.48

2 [2–3) 67.63 2.16

3 [3–5) 132.55 4.23

4 [5–7) 152.04 4.85

5 [7–11) 373.36 11.92

6 [11–17) 628.81 20.08

7 [17–20) 297.71 9.50

8 [20–31) 888.39 28.36

9 [> 31) 357.64 11.42

Tab. 4  Spatial distribution of slope angle

Fig. 4: Landslide hazard maps of Žilina region 

a) using neural network; b) using bivariate statistical analysis; c) using 

multivariate statistical analysis

Landslide 
hazard 
degree

Area 
[km2]

Area 
[%]

Area of 
landslides 

[km2]

Area of 
landslides 

[%]

1 1447.73 46.22 1.42 6.33

2 726.39 23.19 2.51 11.21

3 424.64 13.56 3.44 15.37

4 277.71 8.87 4.41 19.72

5 255.80 8.17 10.60 47.37

∑ 3132.26 100.00 22.38 100.00

Tab. 5  Spatial distribution of landslide hazard degree and slope deforma-

tions based on neural network
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To verify the rate of success of created prognostic landslide 
susceptibility maps receiver operating characteristics (ROC) 
curves were used. The most important parameter is the area 
under curve (AUC). The size of the AUC determines the overall 
quality of predictive models. The maximum area of graph is  
1 (ideal model, success rate is 100 %), the area of model with a 
success rate of 50 % has AUC = 0.5 (trivial model). The closer 
the area to the value 1 is, the more accurate the model is (Bed-
narik et al., 2010). Using bivariate statistical analysis the AUC 
is 0.852, for multivariate 0.919 and using NN the result is 0.924. 
The results shows that biggest rate of success has the prognostic 
landslide hazard map created using ANN and it is equal to 92.4 

%. The calculated curves are shown in Fig. 5. According to the 
ROC curves only small differences between the results of used 
methods are visible. As follows from Fig. 4, there is a significant 
difference. Due to this, second approach of verification had been 
used based on overlaying prognostic models with the landslide 
inventory map. 

This verification approach compared areas of registered 
landslides with high and very high degree of landslide haz-
ard, it means with the classes 4 and 5 in the prognostic map. 
In this case, the results did not correspond to the results of 
ROC curves. The lowest success has a prognostic map created 
by neural network and is equal to 67.09 %. Prognostic map 

Landslide 

hazard 

degree

Area 

[km2]

Area 

[%]

Area of 

landslides 

[km2]

Area of 

landslides 

[%]

1 626.54 20.00 0.05 0.22

2 630.90 20.14 0.22 0.99

3 625.44 19.97 2.04 9.13

4 625.05 19.96 5.10 22.77

5 624.33 19.93 14.97 66.89

 ∑ 3132.26 100.00 22.38 100.00

Landslide 

hazard 

degree

Area 

[km2]

Area 

[%]

Area of 

landslides 

[km2]

Area of 

landslides 

[%]

1 1138.96 36.36 0.00 0.00

2 498.25 15.91 0.07 0.31

3 493.50 15.76 0.95 4.25

4 506.70 16.18 4.45 19.86

5 494.86 15.80 16.91 75.57

 ∑ 3132.26 100.00 22.38 100.00

Fig. 5: ROC curves

1) artificial neural network; 2) multivariate statistical analysis; 3) bivariate statistical analysis

Tab. 6: Spatial distribution of landslide hazard degree and slope deforma-

tions based on bivariate analysis

Tab. 7: Spatial distribution of landslide hazard degree and slope deforma-

tions based on multivariate analysis
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created using bivariate statistical analysis has a percentage suc-
cess 89.65 %. The highest success was reached by prognostic 
map constructed using multivariate analysis and it is equal to  
95.43 %. This result corresponds with figures much better than 
the result calculated by ROC curves. This can be caused by the 
fact that the neural network ś ROC curve was calculated in 
Matlab and the others were derived from data given by ArcGIS.

From the results we can conclude that bivariate statistical 
analysis shows the area as most unfavorable exactly like in the 
work of Tornyai & Dunčko, 2013. This result cannot be con-
sidered as incorrect, because the classification into landslide 
hazard classes was made by fully automated manner in ArcGIS 
environment, similarly as in the case of NN and multivariate 
statistical analysis in order to objectively compare the results. 
With manual adjustment, which, however, requires considerable 
experience the model could be “tuned in”.

5. Conclusion

In the paper landslide hazard processing by the neural network 
was presented. Multilayer feed-forward neural network with 
back-propagation training algorithm was used. For training ac-
tive landslides and stable areas were used. Preparation of input 
parameters and visualization of resulting maps were processed 
in ArcGIS, the actual calculation of the neural network was car-
ried out in MATLAB. Statistical processing of landslide hazard 
assessment is based on the geological principle of actualism, 
which means that landslides will occur in places where they 
occurred in the past respectively in present under the similar 
activation conditions.

The resulting landslide hazard assessment has been prepared 
using prognostic raster maps with basic cell size of 10 to 10 m. 
Final dividing into liability classes adopted an established “traf-
fic light” system.

Applied bivariate statistical analysis has found that the most 
favorable conditions for the development of slope deformation 
create the combination of Outer Western Carpathian slope sedi-
ments, south-oriented with slope angle from 11 to 17° in areas 
where land is used as a transitional woodland-shrub. 

Applying multivariate conditional analysis few possible 
combinations of input parameters with a 100% probability of 
slope failures were identified. As an example a combination 
of Outer Western Carpathian slope sediments in the natural 
grasslands area with slope angle from 7 to 11° oriented to the 
North is provided.

	 Suitable combination of the conditions for landslides occur-
rence for artificial neural network represent siliciclastic deposits 
of Outer Western Carpathians in the area of pastures, northwest 
oriented with slope from 9° to 15°. To verify the rate of success of 
created prognostic landslide susceptibility maps receiver operat-
ing characteristics (ROC) curves were used.

Given that these methods (bivariate and multivariate) are well 
known and verified, the result of artificial neural network may be 
considered as good, however after comparing the results of the 
multivariate analysis showed the most accurate outcome. Better 
results can be achieved by manual editing of the final hazard 

classification, but this step requires considerable experience not 
only in the field of engineering geology.
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