Hydrocarbon potential of the Oligocene and Miocene sediments from the Modrany-1 and Modrany-2 wells (Danube Basin, Slovakia)

Tomáš Vlček¹, Natália Hudáčková¹, Michal Jamrich¹, Eva Halásová¹, Juraj Franců², Petronela Nováková¹, Marianna Kováčová¹ & Michal Kováč¹

¹Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic; vlcek22@uniba.sl

²Czech Geological Survey, Leitnerova 22, 658 69 Brno, Czech Republic

AGEOS

Abstract: The Oligocene Tard and Kiscell formations represent classical source rock examples in the Hungarian part of the Danube Basin. Similar sediments recorded in the Slovak part of the Danube Basin were studied by Rock-Eval pyrolysis in this paper, while their stratigraphic position was supported by the foraminiferal and nannoplankton biostratigraphy. Result obtained from MOD-1 and MOD-2 wells show that the Oligocene sediments are immature (T_{max} < 432 °C). They contain mixed kerogen type II/III as well as coaly matter and show lower hydrocarbon potential (TOC 1.38–1.57 wt %; HI 164-345 mg HC/g TOC; PP 4.60-5.59 mg HC/g rock). Composition of organic matter confirms correlation with Hungarian Kiscell Fm. The Neogene sediments are immature and have a poor petroleum potential. One exception is present in Pannonian sediments with kerogen type II/III, relatively high TOC (0.98 wt %) and hydrogen index (HI= 424 mg HC/g TOC). Fair petroleum potential (PP 4.36 mg HC/g rock) shows that some horizons (Tortonian) can be potentially perspective in the deeper buried part of the basin.

Keywords: Danube Basin, Rock-Eval, hydrocarbon potential, biostratigraphy

1. INTRODUCTION

The Danube Basin belongs to the Pannonian basin system (Fig. 1a) and during the Oligocene and early-middle Miocene it was a part of the Central Paratethys Sea. Subsequently the main marine corridors were cut off and the area became a part of the vast Lake Pannon (Kováč et al., 2017). Hydrocarbon exploration in the Slovak part of the Danube Basin started in 1952 and discovered small accumulations of natural gas with predominance of methane. The exploration did not continue until the early 90's (Milička, 2017). Oil traces have been recorded in several wells in the Blatné and Želiezovce partial depressions during this period (Pereszlényi et al., 1993; Milička et al., 2015; Milička, 2017).

The lower Oligocene (Kiscellian) sediments are in Hungary divided to the Tard Fm. and the Kiscell Fm. (Tari et al., 1993). The main source rocks are the Tard clays with minor source potential in the overlying the Kiscell Fm. (Tari et al., 1993; Milota et al., 1995; Badics & Vető, 2012; Bechtel et al., 2012). Laminated marls and shales of the Tard Fm. are considered as the best oil-prone rocks of the entire Hungarian Oligocene sequence; however, the organic matter is thermally immature (Bechtel et al., 2012). While the Tard Formation contains kerogen type II, the Kiscell Fm. contains kerogen type II/III (Milota et al., 1995; Bechtel et al., 2012). Hydrocarbon potential of the Tard Clay sediments is more than 5–7 kg HC t⁻¹ rock (Milota et al., 1995). The overlaying Kiscell Clay Formation has fair source quality, but the average organic carbon and bitumen contents is much lower (<1 wt % TOC;

HI <200 mg HC/g TOC). Mentioned studies are focused only on the Tard clay and data about the Kiscell Fm. are insufficient.

The Želiezovce depression (south-eastern part of the Slovak Danube Basin; Fig. 1b) is in close vicinity to the Hungarian Oligocene source rock and several wells yield potentially similar Oligocene sediments (Biela, 1978; Franko et al., 2011; Zlinská, 2016; Kováč et al., 2018). This paper intends to refine the previous results about petroleum potential of the Oligocene sediments (Pereszlényi et al., 1993; Milička et al., 2015; Milička, 2017) with support of new biostratigraphic data. The aims of paper are to evaluate richness, quality and maturation of the Oligocene rocks in Slovak part of the Danube Basin. Moreover, the study will also attempt to pinpoint additional source rock candidates in all younger sediments that are presented in the study area.

2. GEOLOGICAL SETTINGS

The Danube Basin represents the northwestern part of the Pannonian Basin System (Fig. 1a). The basin sensu stricto was opened as a back-arc (Kováč, 2000; Horváth et al., 2015) or an intraarc basin (Vass, 2002) during the Miocene. The depocenter is composed of several partial sub-basins (depressions), and this study focuses on the southeastern one, which is referred to as the Želiezovce depression (Fig. 1b). In this part of the Danube Basin, the basement rocks are composed of Paleozoic and Mesozoic units of the Transdanubian range and Central Western Carpathians,

Fig. 1. A) Position of the study area in the Alpine-Carpathian-Pannonian system. B) Map of Želiezovce depression (Danube Basin) with deep wells marked (Fusán, 1987; Horváth et al., 2015).

which are divided by the Hurbanovo-Diósjenő fault (Fusán et al, 1987; Hók et al., 2014; Klučiar et al., 2016). The Oligocene sediments occur along mentioned line and represent of the Buda retro-arc Basin remnants (Tari et al., 1993; Kováč et al., 2018). These sediments were previously ranked to the Cíž Formation (Vass, 2002) while present time they are correlated with the Kiscell Fm. (Kováč et al., 2018). The extend of the Oligocene sediments is documented in the several wells (Modrany-1, Modrany-2, Nová Vieska-1 wells and Obid well series; Biela, 1978; Kováč et al., 2018). They crop out in the Burda Mts. The proximal shelf depositional environment was specified to a seacoast marsh and lagoon (Kováč et al., 2018; Vlček et al., 2019). The Oligocene sediments were then incorporated into the younger back-arc Danube Basin. The Neogene fill is more than 3000 m thick (Kováč et al., 2018) and the succession starts with the offshore volcanosedimentary deposits of the Bajtava-Špačince Formation (early

Badenian-stable submarine platform environment; Fig. 2). The basin was gradually filled up during Serravallian by sediments of the Pozba-Vráble formations (late Badenian-Sarmatian; deltaic and shelf environment; Fig. 2). After a short hiatus, the late Miocene (Pannonian) formations follow (Kováč et al., 2018). They are represented by the Ivanka Formation which yields muddy sediments of a stable submarine platform, sandy turbidite deposits and muddy deposits of the shelf-break slope (Fig. 2). These are followed by sandy deltaic strata of the Beladice Formation and by mostly muddy alluvial sediments of the Volkovce Formation. A thin cover of alluvial Quaternary gravels concludes the basin infill (Šujan et al., 2018).

3. METHODS

3.1. Biostratigraphy

Foraminifers (Modrany-1, 9 samples; Modrany-2, 14 samples) were gained from 200 g of dried well core material and treated with H_2O_2 (10%) and subsequently washed using sieves with a mesh size of 1.25 and 0.071 mm. Some of the very compacted clay samples were additionally treated by Rewoquat. Finally, 250 specimens were picked if possible (planktic and benthic). If fewer specimens were present, all foraminifera tests have been picked from two standardized residuum loads. Combination of the binocular stereoscopic microscope Olympus SZ75, the biological polarizing microscope (Comenius University in Bratislava) and the scanning electron microscope QUAN-TA FEG 250 (Institute of Electrical Engineering, SAS) were used to determine and image the foraminifers. Determination of foraminifers followed Loeblich & Tappan (1992), Cicha et al. (1998) and Holbourn et al. (2013). The major problem of foraminiferal determination was dis-

solution of foraminiferal tests and presence of calcite molds mostly without original calcite wall. Due to the poor preservation some tests stay in open nomenclature. Paleoecological parameters of the obtained foraminiferal assemblage were evaluated based on the presence and dominance of taxa exhibiting special environmental significance (Boltovskoy, 1976; Boltovskoy & Wright, 1976; Spezzaferri et al., 2004; Murray, 2006).

Calcareous nannofossils from Modrany-1 (MOD-1) and Modrany-2 (MOD-2) wells were obtained from 38 samples. Smear slides were prepared using standard method (Bown, 1998). Calcareous nannofossils were counted in 300 fields of view, by using Olympus BX 50, objective with 100x magnification and oil immersion. Camera Olympus Infinity 2, with QuickPHOTO CAMERA 2.3 software was used for the photographic record. Nannofossils determination is supported by MIKROTAX webpage, Young et al. (2017). Depth (m) Standard

500

750

1000

1500

Modrany-' 1250 Tortonian-Pliocene

Serr.

-anghian

Pannonian

U.B-S,

Central Paratethys Chronostrat.

Lithology

7/1

9/1

12/1

17/1

Bel.

lvanka

Poz-Vr.

3.2. Rock-Eval pyrolysis

From the Modrany-1 and Modrany-2 wells, 11 fine grained samples were analyzed by Rock-Eval 6 pyrolysis (Lafargue et al. 1990) at the Oil and Gas Institute - National Research Institute in Cracow, Poland. Several important parameters were determined: S1 free hydrocarbons (mg HC/g rock), S2 pyrolytic hydrocarbons (mg HC/g rock), S3 pyrolytic CO_2 (mg CO_2/g rock), T_{max} maximum of pyrolytic S2 curve (°C), as well as the Hydrogen, Oxygen and production indexes. The hydrogen index (HI) is the ratio of pyrolytic hydrocarbons and total organic carbon (mg HC/g TOC). The oxygen index (OI) is the ratio of pyrolytic CO₂ and grams of TOC (mg CO_2/g TOC). The production index (PI) is defined as S1/(S1+S2)(Espitalié et al., 1984; Lafargue et al. 1998; Behar et al., 2001). The petroleum potential is calculated as the sum of S1 and S2 (Tab. 1) (Peters, 1986; Peters & Cassa, 1994).

4. RESULTS

4.1. Biostratigraphy

Sediments in the depth of 2105-1855 m (MOD-1) and 2305-2164 m (MOD-2) include calcareous nannoplankton Reticulofenestra lockeri, R. ornata, R. stavensis, R. bisecta, Zygrhablithus bijugatus and Lanternithus minutus (Fig. 3; Suppl. 1, 2) together with the last occurrence of Coccolithus formosus, Discoaster tanii, Lanternithus minutus, R. umbilicus in the depth of 2164 m (MOD-2). Foraminifera assemblage yield the genus Subbotina (S. tecta, S. corpulenta, S. angiporoides; Fig. 4). Therefore, the sediments are ranked to the Oligocene. Cretaceous and Paleogene redeposits are observed.

Sediments in the depth of 2117-2110 m (MOD-2) include Helicosphaera ampliaperta, Sphenolithus heteromorphus, Helicosphaera carteri and Umbilicosphaera rotula (Suppl. 1) what ranks them to the Badenian part of the NN4 Zone (Martini, 1971).

In the depth of 1755–1100 m (MOD-1) and 2009-1356 m (MOD-2) the NN5 zone nannofossil association was recognized based on Reticulofenestra minuta, R. haqii, Braarudosphaera

Tab. 1. Correlation of the parameters describing the petroleum potential. Modified from Peters (1986).

-		
	TOC (wt %)	$PP = S_1 + S_2$ (mg HC/g rock)
Poor	< 0.5	<3
Fair	0.5-1.0	3.0-6.0
Good	1.0-2.0	6.0-25.0
Very Good	>2.0	>25

Standard Chronostrat.

Fort.-Pli. Pann.

Serrava. U.B.-Sar.

-anghian

Depth (m) 1000

1250

1500

1750

2000

Modrany-2

1150

-itholog

212

Van.

Poz-Vr.

Baitava-Špačince -ower Badenian

Fig. 2. Lithostratigraphy of Modrany-1, Modrany-2 wells with marked Rock-Eval samples as red dots.

Fig. 3. Nannofossils from Modrany-1 and 2 wells (c=core, b=box): A-Isolithus semenenko (Luljeva, 1989), MOD-1, c9, b1, 900-905 m; B-Reticulofenestra tegulata (Bona & Gal, 1985) Coric & Gross, 2004, MOD-2, c2, b3, 1154-1159 m; C - Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969, MOD-1, c12, b1, 1050-1056 m; D - Calcidiscus premacintyrei (Theodoridis, 1984), MOD-2, c3, b1, 1208-1211 m; E - Sphenolithus heteromorphus (Deflandre, 1953), MOD-1, c17, b1, 1298-1303 m; F - Helicosphaera ampliaperta (Bramlette & Wilcoxon, 1967), MOD-2, c15, b1, 2110-2117 m; G – Coccolithus formosus (Kamptner, 1963) Wise, 1973, MOD-2, c18, b1, 2305-2308 m; H - Lanternithus minutus (Stradner, 1962), MOD-1, c28, b1, 1855-1859 m; I-Discoaster tanii (Bramlette & Riedel, 1954), MOD-2, c18, b1, 2305-2308 m; J-Reticulofenestra umbilicus (Levin, 1965) Martini & Ritzkowski, 1968, MOD-2, c16, 2164-2167 m; K - Reticulofenestra stavensis (Levin & Joerger, 1967) Varol, 1989, MOD-2, c18, b1, 2305-2308 m; L-Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) Deflandre, 1959, MOD-1, c31, b3, 1900-1995 m.

570

bigelowii parvula, Discoaster variabilis, Helicosphaera walbersdorfensis, H. waltrans, Umbilicosphaera rotula, U. jafari and Thoracosphaera sp. The acme of Sphenolithus heteromorphus is associated with Calcidiscus, Calcidiscus sp., C. leptoporus, C. tropicus, Discoaster exilis, D. deflandrei. C. pelagicus, Cyclicargolithus floridanus. C. premacintyrei (Suppl. 1). This age range is confirmed by foraminiferal assemblage where Langhian (early Badenian) index foraminiferal species Globigerinoides bisphaericus, Praeorbulina sicana and Praeorbulina circularis starts from the depth of 2009 m (MOD-2). Presence of Orbulina suturalis-acme (MOD-2 1507 m; MOD-1 1303 m) indicates an age of 14.6 Ma or younger (Abdul Aziz et al., 2008). Occurrence of planktonic Globoturborotalitalids, Globigerininds and Asterigerinata planorbis increases upward. Benthic species like Hoeglundina, Bolivina, Uvigerina, Melonis, Spiroplectammina, Heterolepa, Bulimina sp., Bathysiphon, Ammobaculites, Neoconorbina terquemi, Valvulineria sp., Reophax, Textularia and abundant miliolid forams are present. The coarse-grained interval appearing in the depth of 1400-1315 m (MOD-2; Fig. 2) is placed on the base of the late Badenian-Sarmatian cycle in this study, and the foraminiferal assemblage obtained within is considered to be a redeposit.

Nannofossils assemblage of the late Badenian NN6 Zone is indicated in the depth of 1103-1050 m (MOD-1) and 1297-1208 m (MOD-2) by Braarudosphaera bigelowii parvula, C. leptoporus, Calcidiscus sp, C. pelagicus, C. premacintyrei C. tropicus, D. variabilis, Helicosphaera walbersdorfensis, Pontosphaera japonica, R. pseudoumbilicus, R. haqii, R. minuta, U. rotula, D. musicus, Discoaster sp., Holodiscolithus macroporus, Sphenolithus abies, *H. wallichii*, (Suppl. 1). The presence of *S. heteromorphus* and *H*. waltrans together with the damaged and sorted foraminiferal tests indicate redeposition. This stratigraphic ranking is confirmed by planktonic foraminifera assemblage like Globigerina bulloides, Globoturborotalita quinqueloba, Globorotalia sp., G. bykovae and Velapertina indigena. Additionally, first occurrence of Globoturborotalita druryi originally described as middle Badenian (Cicha et al., 1975; CPN8) can be connected with the late Badenian age according to Kováč et al. (2018). Last occurrence (LO) of Orbulina universa was documented. Benthic assemblage is diversified and consists of: *Bolivina, Bulimina, Cassidulina, Valvulineria, Nonion, Melonis, Uvigerina, Hoeglundina, Lenticulina, Pullenia, Asterigerina, Lobatula* and agglutinated forms.

Following interval (MOD-1 1105–900 m; MOD-2 1159–1104 m) contains low diversified nannofossil assemblage of *Reticulofenestra tegulata* and *Isolithus semenenko* which together with foraminifera *Trochammina kibleri* document early Pannonian (Tortonian) age. In the depth of 1103 m (MOD-2) only reworked *Heterolepa dutemplei* was found.

In summary, based on these results the strata from the Modrany-1 and Modrany-2 wells can be divided into:

1.) Oligocene (MOD-1 depth of 1995–1855 m and MOD-2 2445–2140 m); Biostratigraphic markers indicate the NP 21-23 biozone what would rank the sediments into Priabonian-Kiscellian (Rupelian) boundary, which correlates with the Tard Fm. However, the Tard Fm. is limited into the basinal part and is linked with intra Oligocene denudation (Tari et al. 1993; Sztanó & Tari, 1993). Nevertheless, the encountered sediments are transgressive what is supported by onlap onto the pre-Cenozoic basement. Therefore, it is most likely that associations were redeposited from the Tard Fm. into to Kiscell Fm. (Kováč et al. 2018).

2.) Early Badenian /Langhian/ Bajtava-Špačince fms. which occur in the depth of 2140–1400 m (MOD-2) and 1760–1298 m (MOD-1).

3.) Late Badenian-Sarmatian /Serravallian/ Pozba-Vráble fms. present in the depth interval of 1400–1180 m (MOD-2) and 1103–1050 m (MOD-1).

4.) Finally, sediments up from the depth of 1180 m (MOD-2) and 1005 m (MOD-1) are ranked to Pannonian (Tortonian). The Pannonian formations (Ivanka, Beladice and Volkovce fms.) were divided based mostly on the correlation with the data of Kováč et al. (2018).

4.2. Rock-Eval pyrolysis

Rock-Eval pyrolysis allows detailed characterization of the organic matter in sediments, mainly gives information about thermal maturity, petroleum potential and kerogen type. Rock-Eval

Well	Ctuationabu	Depth	TOC	S1	S2	S3	T _{max}				S2/S3	Kerogen	PP
MOD-1	Stratigraphy	(m)	(wt %)	(m	ng HC/g ro	ck)	(°C)	п	0i	PI		type	(S1+S2)
7/1	Tortonian	801	0.48	0.04	0.47	0.94	428	98	196	0.07	0.50	Ш	0.51
9/1	Tortonian	900	0.90	0.06	1.55	0.60	430	172	67	0.04	2.58	III–IV	1.61
12/1	Serravallian	1050	0.89	0.03	1.00	0.75	426	112	84	0.03	1.33	III–IV	1.03
17/1	Langhian	1298	0.81	0.03	0.70	1.05	430	86	130	0.03	0.67	IV	0.73
28/3	Rupelian	1857	1.38	0.09	4.51	1.00	428	327	72	0.02	4.51	Ш	4.60
33/4	Rupelian	2105	2.74	0.10	4.50	0.99	412	164	36	0.02	4.55	Ш	4.60
MOD-2													
2/2	Tortonian	1157	0.98	0.20	4.16	0.60	429	424	61	0.05	6.93	П	4.36
4/2	Serravallian	1255	0.80	0.02	0.86	0.79	431	108	99	0.03	1.09	Ш	0.88
7/3	Langhian	1408	0.58	0.03	0.72	0.92	430	124	159	0.04	0.78	Ш	0.75
18/1	Rupelian	2305	1.50	0.10	4.74	0.59	432	316	39	0.02	8.03	-	4.84
18/2	Rupelian	2308	1.57	0.18	5.41	0.73	431	345	46	0.03	7.41	-	5.59

Tab. 2. Rock-Eval	parameters from	the Modrany-1	and Modrany-2 wells.
	parametersmonn	the mounting i	and mountary 2 wens.

parameters of the sediments from the studied wells (MOD-1 and MOD-2) are plotted in Figures 5, 6 and displayed, classified in the Tab. 2.

For the Oligocene samples (Kiscell Fm.), S1 values varies from 0.09 to 0.18 mg HC/g rock (average 0.12 mg HC/g rock), S2 from 4.50 to 5.41 mg HC/g rock (avg. 4.79 mg HC/g rock), S3 from 0.59 to 1.00 mg CO₂/g rock (avg. $0.83 \,\mathrm{mg}\,\mathrm{CO}_{2}/\mathrm{g}\,\mathrm{rock}$). The hydrogen index (HI) reaches relatively high values of 164-345 mg HC/g TOC (avg. 288 mg HC/g TOC). On the other hand, oxygen index (OI) attains low values of 36-72 mg CO₂/g TOC (avg. 48 mg CO_2/g TOC). T_{max} varies between 412 and 432 °C (avg. 426 °C), and production index (PI) between 0.02 and 0.03 (avg. 0.02). The petroleum potential (PP) ranked to 4.60-5.59 mg HC/g rock (avg. 4.91 mg HC/g rock), S2/S3 ratio reaches 4.51-8.03 (avg. 6.13). The Kiscell Fm. is relatively rich in TOC attaining values of 1.38-2.74 wt % (avg. 1.80 wt %).

Two samples were analyzed from the Bajtava-Špačince formations (Langhian). These sediments are characterized by S1 values of 0.03 mg HC/g rock, S2 0.70-0.72 mg HC/g rock and S3 0.92-1.05 mg CO₂/g rock. HI is very low 86 and 124 mg HC/g TOC (avg. 105 mg HC/g TOC), while values of oxygen index (OI) are high $130-159 \text{ mg CO}_2/\text{g TOC}$ (avg. 145 mg CO_2/g TOC). T_{max} from both samples are equal (430 °C) and values of production index (PI) are 0.03–0.04. The calculated petroleum potential index is very low 0.73-0.75 mg HC/g rock (avg. 0.74 mg HC/g rock) and S2/S3 ratio is 0.67 and 0.78 (avg. 0.72). The TOC values of the Bajtava-Špačince fms. are 0.58 wt% and 0.81 wt% with average of 0.70 wt%.

The Pozba-Vráble fms. (Serravallian) is represented by two samples. The samples show S1 0.02 and 0.03 mg HC/g rock, S2 0.86–1.00 mg HC/g rock (avg. 0.93 mg HC/g rock) and S3 0.75–0.79 mg CO₂/g rock (avg. 0.77 mg CO₂/g rock). The both calculated indexes HI (112–108 mg HC/g TOC; avg. 110 mg HC/g TOC) and OI (84–99 mg CO₂/g TOC; avg. 92 mg CO₂/g TOC) are low. T_{max} values 426–431 °C (avg. 429 °C) as well as PI index 0.03 are low. The petroleum potential is 0.88–1.03 mg HC/g rock (avg. 0.96 mg HC/g rock) and S2/S3 ratio is 1.09–1.33 (avg. 1.21). TOC shows values 0.80–0.89 wt % (avg. 0.85 wt %).

The Pannonian samples (Ivanka Fm.) show S1 values ranging between 0.04 and 0.20 mg HC/g rock (avg. 0.10 mg HC/g rock), S2 between 0.47 and 4.16 mg HC/g rock (avg. 2.06 mg HC/g rock) and S3 reaching 0.60 and 0.94 mg CO_2 /g rock

Fig. 4. Selected foraminifera from Modrany-1 and 2 wells (c=core, b=box): A - Miliolinella sp., MOD-1, c12, b4, 1050-1056 m; B - Articulina sp., MOD-1, c12, b4, 1050-1056 m; C - Elphidium flexuosum (d'Orbigny, 1846), MOD-1, c12, b3, 1050-1056 m; D - Elphidium flexuosum (d'Orbigny, 1846), MOD-2, c7, b2, 1404-1408 m; E - Elphidium aculeatum (d'Orbigny, 1846), MOD-2, c4, b1, 1253-1258 m; F – Elphidium aculeatum (d'Orbigny, 1846), MOD-1, c12, b3, 1050-1056 m; G – Fissurina laevigata Reuss, 1850, MOD-2, c4, b1, 1253-1258 m; H - Elphidium macellum (Fichtel & Moll, 1798), MOD-2, c6, b2, 1356-1358 m; I – Globorotalia bykovae (Aisenstat in Subbotina, Pishvanova & Ivanova, 1960), MOD-2, c8, b2, 1505-1509 m; J - Turborotalita quinqueloba (Natland, 1938), MOD-2, c2, b3, 1154-1159 m; K - Globoturborotalita druryi (Akers, 1955), MOD-2, c7, b2, 1404-1408 m; L, M - Globigerinita uvula (Ehrenberg, 1861), MOD-2, c4, b1, 1253-1258 m; N - Globigerina bulloides (d'Orbigny, 1826), MOD-2, c5, b1, 1297-1300 m; O - Orbulina universa (d'Orbigny, 1839), MOD-2, c4, b1, 1253-1258 m; P - Trilobatus quadrilobatus (d'Orbigny, 1846), MOD-2, c4, b1, 1253-1258 m; Q - Orbulina suturalis (Brönnimann, 1951), MOD-2, c8, b2, 1505-1509 m; R - Globigerina regularis (d'Orbigny, 1846), MOD-2, c5, b1, 1297-1300 m; S - Trilobatus bisphericus (Todd, 1954), MOD-2, c5, b1, 1297-1300 m; T - Spirorutilus carinatus (d'Orbigny, 1846), MOD-2, c14, b3-4, 2005-2009 m; U - Uvigerina asperula (Cžjžek, 1848), MOD-2, c2, b3, 1154-1159 m; V - Uvigerina aculeata (d'Orbigny, 1846), MOD-2, c14, b3-4, 2005-2009 m; W, X - Subbotina sp., MOD-2, c18, b1, 2305-2308 m; Y - Lagenammina atlantica (Cushman, 1944), MOD-1, c17, b1, 1298-1303 m.

(avg. 0.71 mg CO₂/g rock). The HI values range from 98 to 424 mg HC/g TOC, while the OI values from 61 to 196 mg CO₂/g TOC. T_{max} of the Pannonian samples vary between 428 and 430 °C (avg. 429 °C) and PI between 0.04–0.07 (avg.

In summary, based on Rock-Eval pyrolysis results from the Modrany-1 and Modrany-2 wells, the Oligocene sediments have higher S1, S2, S3, PP, HI and TOC values with lower OI than Neogene samples, while the T_{max} values are very similar for the Oligocene and Neogene sediments.

5. DISCUSSION

Kerogen types and petroleum potential

Data from Rock-Eval pyrolysis provide information about kerogen types and petroleum potential of sedimentary strata in the southeastern Danube Basin.

In the Oligocene (Kiscell Fm.; Fig. 5) the analysis identifies kerogen type II/III dominated by mixture of terrestrial and

marine organic matter derived from higher land plants together with phytoplankton. The TOC values greater than 1.5 wt.% indicate good organic richness and fair petroleum generation potential (Fig. 6). The higher S2/S3 ratio (>5; see Table 1) and low values of OI indicate coaly material (Peters, 1986) which is consistent with the littoral environment of deposition (Kováč et al., 2018). The current results documented higher TOC and HI values than in Hungary. The previous analyses (Milička, 2017) from these wells showed similar values of TOC, S1 and S2 (Fig. 7). On the other hand, values in the Nová Vieska-1 and Obid-1 wells shows poor petroleum potential only with few exceptions (Fig. 7). Extreme high values of TOC and S2 in Obid-1 well can be explained by the presence of coaly detritus-rich layer, which was also confirmed by biomarkers and microscopy (Milička, 2017).

The Paleogene sediments from Danube Basin (Slovak part) are in passive maturity stage and their burial depth do not exceed the immature zone which is confirmed by $T_{max} < 432$ °C, in accordance with previous works (Pereszlényi et al., 1993; Milička et al., 1996, 2015; Milička, 2017). The mature stage from the

Fig. 5. Plots of Hydrogen Index (HI) versus Oxygen index (OI), Peak S2 versus TOC and Hydrogen Index (HI) versus Tmax outlining kerogen type and thermal maturity of sediments from the Modrany-1 and 2 wells. Modified according to Espitalié et al. (1984) and Peters (1986).

Figure 6. Plot of PP (S1+S2) versus TOC showing quality of organic matter in sediments from Modrany-1 and 2 wells.

Figure 7. Summary petroleum potential diagram for Oligocene sediments from Slovakian part of Danube Basin. Based on earlier observations (Milička, 2017) and this study.

Danube Basin starts in the depth of about 2500 m (Pereszlényi et al., 1993; Milička et al., 2015; Milička, 2017). One exception is the Nová Vieska-1 well, where Oligocene sediments are very close to thermally matured stage (average T_{max} 433°C), which correspond with burial depth (above 2600 m). However, the thickness of Oligocene sediments, which can be buried deeper is irrelevant for petroleum prospection.

Brackish, euxinic Tard Fm. includes kerogen type II and III in Hungary (Tari et al., 1993; Milota et al., 1995). This kerogen was most likely redeposited to the sands and clay of the Kiscell Fm. This is consistent with previous study of Kováč et al. (2018), who suggested redeposition based on presence of coal beds which should not appear in the Tard Fm. and are typical for Kiscell Fm. The results from Rock-Eval analysis in this study confirm this claim, since the Oligocene sediments include mixed kerogen type II/III and abundant coal seams.

The Neogene sediments yield low TOC values (under 1 wt.%). These findings are consistent with earlier observations (Pereszlényi et al., 1993; Milička et al., 2015; Milička, 2017). A few intervals occur with elevated organic richness, e.g. in Pannonian (Tortonian) immature sediments of the Ivanka Fm. (T_{max} 429 °C) in MOD-2 well (1157 m) with TOC values of 0.98wt.%. The HI values (424 mg HC/g TOC) values (Fig. 5) suggest kerogen type II. Similar fair-good source rocks were described also in KOL-2 well by Milička (2017). The Pannonian (Tortonian) source rocks occur at depth of 3500 m in the deeper part of the Gabčíkovo depression (Sztanó et al., 2016) of the Danube Basin, where they reach the oil window maturity.

6. CONCLUSIONS

Rock-Eval pyrolysis shows that the Oligocene sediments from the Želiezovce depression (Danube Basin) are immature and have a fair hydrocarbons generation potential due to the presence of coaly matter. The presence of kerogen type II/III indicates that the studied mudstones could act as source rocks of light oil and gas in the deeper basin. The known extent of the Oligocene sediments does not reach the predicted oil window. Present results support the sedimentological studies, which correlate the examined succession with the Hungarian Kiscell Fm.

Neogene sediments contain source rock intervals with kerogen type III and IV and poor to fair generative potential. In the Želiezovce depression Pannonian sediments (Ivanka Fm.) are locally more abundant in kerogen type II and could act as oil and gas source rocks in the central deep part of the basin. The studied sediments represent the immature shallower part of the basin fill.

Acknowledgement: This work was supported by the Slovak Research and Development Agency under the contracts APVV-15-0575, APVV-16-0121 and Grants UK/70/2019, UK/211/2019. Special thanks to Nafta a.s. management for allowing access the well core samples. The authors wish to express their gratitude to Katarína Šarinová and Samuel Rybár for valuable suggestions, as well as to the reviewers Stjepan Ćorić, Ján Milička and to the editor Michal Šujan for their constructive feedback, which helped to improve the manuscript.

References

- Abdul-Aziz H., Di Stefano A., Foresi L.M., Hilgen F.J., Iaccarino S.M., Kuiper K.F., Lirer F., Salvatorini G. & Turco E., 2008: Intergrated stratigraphy and ⁴⁰Ar/³⁹Ar chronology of early Middle Miocene sediments from DSDP Leg 42°, Site 372 (Western Mediterranean). *Palaeogeography, Palaeoclimatology, Palaeoecology*, 257, 123–138.
- Badics B. & Vető I., 2012: Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays. *Marine and Petroleum Geology*, 31, 53–69.
- Bechtel A., Hámor-Vidó M., Gratzer R., Sachsenhofer R.F. & Püttmann W., 2012: Facies evolution and stratigraphic correlation in the early Oligocene Tard Clay of Hungary as revealed by maceral, biomarker and stable isotope composition. *Marine and Petroleum Geology*, 35, 55–74.
- Behar F., Beaumont V., De B. & Penteado H. L., 2001: Rock-Eval 6 Technology: Performance and Developments, Oil & Gas Science and Tehcnology, 56, 111–134.
- Biela A., 1978: Deep wells in inner Western Carpathians. Regional geology of Western Carpathians, State Geological Institute of Dionýz Štúr, 224 pp. [In Slovak].
- Boltovskoy E. & Wright R., 1976: Recent Foraminifera. Springer, Dotrecht, 515 pp.
- Boltovskoy E., 1976: Distribution of recent for a finite for a fini
- Bown P.R., 1998: Triassic. In: Bown P.R. (Ed.): Calcareous nannofossil biostratigraphy. British Micropalaeontological Society Publication Series, Chapman & Hall, pp. 29–33.
- Cicha I., Čtyroká J., Jiříček R. & Zapletalová, I., 1975: Principal biozones of the Late Tertiary in Eastern Alps and West Carpathians, in: Cicha, I. (Eds.): Biozonal division of the Upper Tertiary basins of the Eastern Alps and West Carpathians. IUGS Proceedings of the VI Congress Bratislava, pp. 19–34.
- Cicha I., Rögl F., Rupp Ch. & Čtyroká J., 1998: Oligocene–Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 549, 1–325.
- Espitalié J., Marquis F., & Barsony I., 1984: Geochemical logging. In: Voorhess K. J (Ed.): Analytical Pyrolysis. Butterworths, Boston, pp. 53–79.
- Franko O., Pereszlényi M. & Bodiš D., 2011: Genesis of brine in the southeast part of Danube Basin. *Mineralia Slovaca*, 43, 463–478.
- Fusán O., Biely A., Ibrmajer J., Plančár J. & Rozložník L., 1987: Basement of the Tertiary of the inner West Carpathians, State Geological Institute of Dionýz Štúr, Bratislava, pp. 1–123 [in Slovak]
- Hók J., Šujan M. & Šipka F., 2014: Tectonic division of the Western Carpathians: An overview and a new approach. Acta Geologica Slovaca, 6, 2, 135–143.
- Holbourn A., Kuhnt W., Clemens S., Prell W. & Andersen N., 2013: Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years. *Paleoceanography*, 28, 688–699.
- Horváth F., Musitz B., Balázs A., Végh A., Uhrin A., Nádor A., Koroknai B., Pap N., Tóth T. & Wórum G., 2015: Evolution of the Pannonian Basin and its geothermal resources. *Geothermics*, 53, 328–352.
- Klučiar T., Kováč M., Vojtko R., Rybár S., Šujan M. & Králiková S., 2016: The Hurbanovo–Diösjenő Fault: A crustal-scale weakness zone at the boundary between the Central Western Carpathians and Northern Pannonian Domain. Acta Geologica Slovaca, 8, 1, 59–70.
- Kováč M., 2000: Geodynamic, Paleogeographic and structural development of the Carpatho-Pannonian region during the Miocene: New view on the Neogene basins of Slovakia. Veda, Bratislava, 202 pp. [In Slovak]

- Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., Plašienka D., Klučiar T., Hudáčková N. & Oszczypko-Clowes M., 2017: Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. *Global and Planetary Change*, 155, 133–154.
- Kováč M., Rybár S., Halásová E., Hudáčková N., Šarinová K., Šujan M., Baranyi V., Kováčová M., Ruman A., Klučiar T. & Zlinská A., 2018: Changes in Cenozoic depositional environment and sediment provenance in the Danube Basin. Basin Research, 30, 97–131.
- Lafargue, E., Espitalie, J., Jacobsen, T. & Eggen, S., 1990: Experimental simulation of hydrocarbon expulsion. Organic Geochemistry, 16, 121–131.
- Lafargue, E., Marquis, F. & Pillot, D., 1998: Rock-Eval 6 Applications in Hydrocarbon Exploration, Production and Soil Contamination Studies. *Oil & Gas Science and Technology*, 53, 4, 421–437.
- Loeblich A.R. & Tappan H., 1992: Present status of Foraminiferal Classification. In: Takayanagi Y. & Saito T. (Eds.): Studies in Benthic Foraminifera. Tokai University Press, Tokyo, pp. 93–102.
- Martini E., 1971: Standard Tertiery and Quartenary Calcareous Nannoplankton Zonation. Proceeding of the II planktonic Conference, Roma 1970. *Edizioni Tecnoscienza*, pp. 739–785.
- Milička J., Pereszlényi M., Francu J. & Vitaloš R., 1996: Application of Rock-Eval pyrolysis and modelling in hydrocarbon potential evaluation of the Danube basin, Slovakia. In: Wessely G & Liebl W. (Eds.): Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAEG Spec. Publ. No. 5, Geological Society Publishing House, Bath, pp. 431–440.
- Milička J., Kopal L., Kudlička L. & Polc R., 2015: Origin of hydrocarbons in the Slovak part of the Danube Basin, *Acta Geologica Slovaca*, 7, 2, 175–186.
- Milička J., 2017. Hydrocarbon potential of the Danube Basin. Comenius University Bratislava. 150 pp. [In Slovak with English Summary]
- Milota K., Kovács A. & Galicz Z., 1995: Petroleum potential of the North Hungarian Oligocene sediments. Petroleum Geoscience, Vol. 1, pp. 81–87.
- Murray J., 2006: Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, New York, Melbourne, 426 pp.
- Pereszlényi M., Milička J. & Vass D., 1993: Results of geochemical research and modeling of hydrocarbon generation windows in the Danube basin. In: Rakús, M., Vozár, J. (Eds.): Geodynamic model and deep structure of the Western Carpathians. State Geological Institute of Dionýz Štúr, Bratislava, pp. 201–206.

Peters K.E. & Cassa M.R., 1994: Applied Source-Rock Geochemistry. In:

Magoon, L.B. and Dow, W.G., (Eds.): The Petroleum System. From Source to Trap, American Association of Petroleum Geologists, Tulsa, pp. 93–120.

- Peters K.E., 1986: Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. *American Association of Petroleum Geologists Bulletin*, 70, 318–329.
- Spezzaferri S., Rögl F., Ćorić S. & Hohenegger, J., 2004: Paleoenvironmental reconstruction and agglutinated foraminifera from the Karpatian/Badenian (Early/Middle Miocene) transition in the Styrian Basin (Austria, Central Paratethys), in: Bubik, M. & Kaminski, M.A. (Eds.): Sixth International Workshop on Agglutinated Foraminifera, Grzybowski Foundation, Special Publication, 8, 423–459.
- Šujan M., Braucher R., Rybár S., Maglay J., Nagy A., Fordinál K., Šarinová K., Sýkora M., Józsa Š., ASTER Team & Kováč M., 2018: Revealing the late Pliocene to Middle Pleistocene alluvial archive in the confluence of the Western Carpathian and Eastern Alpine rivers: 26Al/10Be burial dating from the Danube Basin (Slovakia). Sedimentary Geology, 377, 131–146.
- Sztanó, O. & Tari, G., 1993: Early Miocene basin evolution in Northern Hungary: Tectonics and Eustacy. *Tectonophysics*, 226, 485–502.
- Sztanó O., Kováč M., Magyar I., Šujan M., Fodor L., Uhrin A., Rybár S., Csillag G. & Tőkés L., 2016: Late Miocene sedimentary record of the Danube / Kisalföld Basin interregional correlation of depositional systems, stratigraphy and structural evolution. Geologica Carpathica, 67, 6, 525–542.
- Tari G., Báldi T. & Báldi-Béke M., 1993: Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. *Tectonophysics*, 226, 433–456.
- Vass D., 2002: Lithostratigraphy of Western Carpathians: Neogene and Buda Paleogene. State Geological Institute of Dionýz Štúr, Bratislava, 200 pp. [In Slovak]
- Vlček T., Kováčová M., Šarinová K., Rybár S., Hudáčková N., Halásová E. & Nováková P., 2019: Source rock and hydrocarbon potential evaluation based on palynofacies and geochemistry of the sedimentary rocks, Danube Basin. AAPG Europe Regional Conference. Paratethys Petroleum Systems. Between Central Europe and the Caspian Region, Vienna, 26–27 March 2019: Book of abstracts, 125–126.
- Young J.R., Bown P.R. & Lees J.A., 2017: Nannotax3 website. International Nannoplankton Association. Accessed 21 Apr. 2017. URL: http://www. mikrotax.org/Nannotax3
- Zlinská A., 2016: Tertiary microfauna from the deep wells in the Želiezovce depression (Danube basin). *Mineralia Slovaca*, 48, 61–82. [in Slovak]

Suppl. 1. Key biostratigraphic data from the: a) Modrany-1 well and b) Modrany-2 well: F- foramanifera, N- nannofossils

a) Modrany-1 well						
Depth (m)	Core/box	Discipline	Zone/Subzone	Event		
900-905	9/1	N	Pannonian/Tortonian	Acme Isolithus semenenko		
955-960	10	N	Pannonian/Tortonian	Reticulofenestra tegulata		
1000-1005	11/1/50 cm	N	Pannonian/Tortonian	Calcidiscus pataecus, Coccolithus pelagicus, Helicosphaera carteri		
1000-1005	11/4	N	Pannonian/Tortonian	Acme Isolithus semenenko		
1000-1005	11/5	N	Pannonian/Tortonian	Acme Isolithus semenenko		
1050-1056	12/1	N	Early Sarmatian/Serravallian (NN6)	Reticulofenestra pseudoumbilicus, Coccolithus pelagicus, Holodiscolithus macroporus		
	12/2/50	F	Fach Constant (Constant Vice (NNC)	Globigerina sp. indet., Elphidium crispum, Heterolepa dutemplei, Elphidium aculeatum, E. josephinum, Schackoinella imperatoria, Bolivina sarmatica, Nodobaculariella sp. Sinuloculina consobrina, Anomalinoides dividens		
1050-1056	12/2/50 cm	N	Early Sarmatian/Serravallian (NN6)	Coccolithus pelagicus, Cyclicargolithus floridanus, Reticulofenestra pseudoumbilicus, Syracosphaera sp.		
		Other		thin shelled ostracods, fish scales and bones		
1050-1056	12/3	F	Early Sarmatian/Serravallian (NN6)	Bolivina sarmatica, Sinuloculina consobrina, Anomalinoides dividens,		
1050-1056	12/4	F	Early Sarmatian/Serravallian (NN6)	Elphidium crispum, Globigerinoides sp. indet. ?, Anomalinoides badenensis/dividens, Bolivina sarmatica, Elphidium josephinum, Articulina sp. indet., Milliolina sp. Indet.		
		Other		Leiosphaera sp., pyritized diatoms		
1050-1056	12/5	N	Early Sarmatian/Serravallian (NN6)	Coronocyclus nitescens, Discoaster exilis, Reticulofenestra haqii, R. minuta, R. pseudoumbilicus, Thoracosphaera sp.		
		F		Globigerina bulloides, G. diplostoma, Trilobatus trilobus, Melonis, Valvulineria, Praeglobobulimina, Globocassidulina, Textularia laevigata, Martinotiella comunis.		
1098-1103 13/1	N	Late Badenian/Serravallian (NN6)	Coccolithus pelagicus, Cyclicargolithus floridanus, Discoaster variabilis, Helicosphaera carteri, H. walbersdorfensis, Reticulofenestra minuta, R. pseudoumbilicus, Pontosphaera multipora			
		Other		bryozoans, algae		
		F		Globigerina bulloides, G. diplostoma, Trilobatus trilobus, G. transsylvanica, G. bykovae, T. quadrilobatulus, T. trilobus, Reophax, Bathysiphon, Textularia.		
1298-1303 17/1	17/1	N	Early Badenian/Langhian (NN5)	Braarudosphaera bigelowii parvula , Coccolithus pelagicus, Coccolithus miopelagicus Discoaster sp., Micrantholithus vesper, Micrantholithus sp., Helicosphaera carteri, H. ved- deri, H. waltrans?, Pontosphaera latelliptica, P. multipora, Sphenolithus heteromorphus		
		Other		echinoderms spines and plates		
	F			Acme Orbulina suturalis, Acme O. universa, G. transsylvanica, G. bykovae, T. quadrilobatulus, T. trilobus		
1298-1303 17/2	17/2	N	Early Badenian/Langhian (NN5)	Braarudosphaera bigelowii parvula , Coccolithus pelagicus, Calcidiscus tropicus, Helicosphaera carteri, Pontosphaera multipora, Reticulofenestra haqii, R. pseudoumbilicus, Umbilicosphaera rotula, U. jafari		
		Other		echinoderms spines and plates		
1298-1303	17/3	F	Early Badenian/Langhian (NN5)	G. transsylvanica, T. quadrilobatulus, T. trilobus, Melonis, Valvulineria, Praeglobobulimina, Globocassidulina, Lenticulina, Lagena, Dentalina, Asterigerinata, Lobatula, Cibicides		
		Other		ostracod valves and echinoderms spines and plates		
1402-1406	19/1	N	Early Badenian/Langhian (NN5)	Braarudosphaera bigelowii, Coccolithus miopelagicus, Coccolithus pelagicus, Helicosphaera carteri, H. walbersdorfensis		
		Other		poriferan spicules		
		F		Nonion commune, Lenticulina sp. Div., Bolivina dilatata		
1698-1702	25/2	N	Early Badenian/Langhian (NN5)	Braarudosphaera bigelowii parvula, Coccolithus pelagicus, Thoracosphaera sp.		
		Other		rests of mollusks, fish bones		
1755-1760	26/1	N	Early Badenian/Langhian (NN5)	Coccolithus pelagicus, Helicosphaera carteri, H. walbersdorfensis, Reticulofenestra haqii		
1855-1859	28/1	N	Kiscellian/Rupelian (NP 22?-23)	Reticulofenestra bisecta, Reticulofenestra stavensis, Zygrhablithus bijugatus, LO Lanternithus minutus		
1900-1995	31/3	N	Priabonian-Kiscellian/Rupelian (NP 21)	Coccolithus formosus, Coccolithus pelagicus, Cyclicargolithus floridanus, Reticulofenestra bisecta, Reticulofenestra sp., Sphenolithus moriformis, Zygrhablithus bijugatus, Lanternithus minutus,		

b)	Modrany-2 well
----	----------------

Depth (m)	Core	Discipline	Zone/Subzone	Event
1100-1104	1/1/50 cm	F	Early Pannonian/Tortonian	Heterolepa dutemplei
1154-1159 2/3/50 cm	F		Trochammina kibleri	
	N	Early Pannonian/Tortonian	Reticulofenestra tegulata, Isolithus semenenko	
		Other		Ostracods, Shark teeth
		F		Velapertina indigena, Globoturborotalita quinqueloba, Globorotalia sp., Uvigerina, Nonion, Bolivina, Lenticulina sp.
1208-1211	3/1/50 cm	N	Early Sarmatian/Serravallian (NN6)	Calcidiscus premacintyrei, C. leptoporus, C. tropicus, H. walbersdorfensis, H. wallichi, H. macroporus, R. haqii, R. minuta, R. pseudoumbilicus
		Other		Foraminiferal tests
		F		FO Globoturborotalita druryi, LO Orbulina universa, Bolivina, Bulimina, Cassidulina, Valvulineria, Melonis, Uvigerina, Cassidulina, Hoeglundina, Lenticulina, Pullenia
1253-1258 4/1/50 cm	N	Late Badenian/Serravallian (NN6)	Braarudosphaera bigelowii parvula, C. pelagicus, C. premacintyrei, C. tropicus, D. musicus, D. variabilis?, Holodiscolithus macroporus, Reticulofenestra. pseudoumbilicus, Sphenolithus abies	
		F		Globigerina bulloides, Globorotalia bykovae, Asterigerina, Lobatula
1297-1300 5/1/50 cm		N	Late Badenian/Serravallian (NN6)	Calcidiscus sp., C. tropicus, D. variabilis, Helicosphaera walbersdorfensis, Pontosphaera japonica, R. pseudoumbilicus, U. rotula
		F		Neoconorbina terquemi, Valvulineria sp., Asterigerinata planorbis
1356-1358 6/1/50 cm		N	Early Badenian/Langhian (NN5)	C. leptoporus, C. premacintyrei, C. tropicus, Helicosphaera walbersdorfensis, H. waltrans, Sphenolithus heteromorphus
1404-1408	7/1/50 cm	F	Early Badenian/Langhian (NN5)	Globoturborotalita, Globigerina, Neoconorbina terquemi, Valvulineria sp.
1505-1509	8/2/50 cm	F	Early Badenian/Langhian (NN5)	FO Orbulina suturalis, Dentoglobigerina, Globorotalia, Globigerinoides spp., Bulimina sp., Bathysiphon, Ammobaculites
1796-1801	12	N	Early Badenian/Langhian (NN5)	Calcidiscus leptoporus, Calcidiscus sp., D. variabilis, Helicosphaera walbersdorfensis, H. scissura, R. haqii, R. minuta
1901-1906	13/1/50 cm	N	Early Badenian/Langhian (NN5)	Acme Sphenolithus. heteromorphus, Calcidiscus sp., C. leptoporus, C. tropicus, Discoaster exilis, D. deflandrei. C. pelagicus, Cyclicargolithus floridanus, R. minuta
2005-2009 14/3-4/50 cm	F	Early Padanian (Langhian (NNE)	Globigerinoides bisphaericus, Praeorbulina sicana, Praeorbulina circularis, Globigerinoides spp., Praeorbulina sp, Hoeglundina, Bolivina, Uvigerina, Spiroplectammina, Heterolepa, Melonis	
	14/3-4/50 Cm	1/50 cm N	Early Badenian/Langnian (NNS)	Reticulofenestra minuta, R. haqii, Braarudosphaera bigelowii parvula, Discoaster variabilis, Helicosphaera walbersdorfensis, H. waltrans, Sphenolithus heteromorphus, Umbilicosphaera rotula, U. jafari,
2110-2117	15/1/50 cm	N	Early Badenian/Langhian (NN4)	Helicosphaera ampliaperta, Sphenolithus heteromorphus, Helicosphaera carteri, Umbilicosphaera rotula
2164-2167	16	N	Priabonian-Kiscellian/Rupelian (NP 21)	LO Coccolithus formosus, LO Discoaster tanii, LO Lanternithus minutus, LO Reticulofenestra umbilicus
		F		Subbotina. tecta, S. corpulenta, S. angiporoides,
2305-2308	18/1/50 cm	N	Priabonian-Kiscellian/Rupelian (NP 21)	Reticulofenestra lockeri, R. ornata, R. stavensis, R. bisecta, Coccolithus formosus, Discoaster tanii, Lanternithus minutus, R. umbilicus

Suppl. 2. Complete fauna list: a) Foraminifera; b) Nannofossils

a) Foraminifera	Asterigerinata sp.
Adelosina pulchella (d'Orbigny, 1826)	Aubignyna perlucida (Heron-Allen & Earland, 1913)
agglutinate indet.	Bathysiphon filiformis Sars, 1872
Ammobaculites agglutinans (d'Orbigny, 1846)	Bathysiphon sp.
Ammonia parkinsoniana (d'Orbigny, 1839)	Bathysiphon taurinensis Sacco, 1893
Ammonia viennensis (d'Orbigny, 1846)	Biasterigerina planorbis (d'Orbigny, 1846)
Ammoscalaria sp.	Bigenerina agglutinans d'Orbigny, 1846
Amphistegina sp.	Bolivina antiqua d'Orbigny, 1846
Angulogerina sp.	Bolivina dilatata Reuss, 1850
Asterigerinata mamilla (Williamson, 1858)	Bolivina dilatata subsp. brevis Cicha & Zapletalová, 1963

Bolivina fastigia Cushman, 1936 Bolivina hebes Macfadyen, 1930 Bolivina pokornyi Cicha & Zapletalová, 1963 Bolivina pseudoplicata Heron-Allen & Earland, 1930 Bolivina sp. Bulimina aculeata d'Orbigny, 1826 Bulimina elegans d'Orbigny in Parker, Jones & Brady, 1865 Bulimina elongata d'Orbigny, 1846 Bulimina intonsa Livental, 1953 Bulimina striata d'Orbigny in Guérin-Méneville, 1832 Bulimina subulata Cushman & Parker, 1937 Cancris auricula (Fichtel & Moll, 1798) Cassidulina globosa Hantken, 1875 Cassidulina laevigata d'Orbigny, 1826 Cassigerinella sp. Caveastomella adolphina (d'Orbigny, 1846) Cibicides crassiseptatus Łuczkowska, 1960 Cibicidoides boueanus ornatus (Cicha & Zapletalová, 1958) Cibicidoides lobatulus (Walker & Jacob, 1798) Cibicidoides pseudoungeriana (Cushman, 1922) Cibicidoides pseudoungerianus ornatus (Cicha & Zapletalová, 1958) Cibicidoides ungerianus (d'Orbigny, 1846) Cyclammina karpatica Cicha & Zapletalová, 1963 Cycloforina badenensis (d'Orbigny, 1846) Dentoglobigerina altispira (Cushman & Jarvis 1936) Discorbis sp. Dorothia scabra (Brady, 1884) *Elphidium aculeatum* (d'Orbigny, 1846) Elphidium crispum (Linnaeus, 1758) *Elphidium fichtelianum* (d'Orbigny, 1846) Elphidium flexuosum (d'Orbigny, 1846) Elphidium macellum (Fichtel & Moll, 1798) Epistominella exigua (Brady, 1884) *Favulina hexagona* (Williamson, 1848) Fissurina laevigata Reuss, 1850 Fursenkoina subacuta (d'Orbigny, 1852) Gaudryina megagranosa Venglinsky, 1953 Gaudrvina sp. Globigerina bulloides d'Orbigny, 1826 Globigerina falconensis Blow, 1959 Globigerina regularis d'Orbigny, 1846 Globigerinella calida (Parker, 1962) Globigerinella obesa (Bolli, 1957) Globigerinella wagneri (Rögl, 1994) Globigerinidae 4-cham. sp. div. indet Globigerinita uvula (Ehrenberg, 1861) Globigerinoides sp. div. indet. Globocassidulina crassa (d'Orbigny, 1839) Globocassidulina subglobosa (Brady, 1881) Globorotalia (Turborotalia) transsylvanica Popescu 1970 Globorotalia acrostoma subsp. partimlabiata Ruggieri & Sprovieri, 1970 Globorotalia bykovae (Aisenstat in Subbotina, Pishvanova & Ivanova, 1960) Globorotalia scitula (Brady, 1882) Globoturborotalita decoraperta (Takayanagi & Saito, 1962)

Globoturborotalita druryi (Akers, 1955) Globoturborotalita woodi (Jenkins, 1960) Guttulina austriaca d'Orbigny, 1846 Hansenisca soldanii (d'Orbigny, 1826) Haplophragmoides sp. Haplophragmoides fragile Höglund, 1947 Haplophragmoides wilsoni Smith, 1948 Haynesina depressula (Walker & Jacob, 1798) Heterolepa dutemplei (d'Orbigny, 1846) Hoeglundina elegans (d'Orbigny, 1826) Lagenammina atlantica (Cushman, 1944) Lagenammina difflugiformis (Brady, 1879) Lagenammina sp. Lenticulina calcar (Linnaeus, 1758) Lenticulina cultrata (Montfort, 1808) Lenticulina sp. Martinottiella communis (d'Orbigny, 1846) Melonis pompilioides (Fichtel & Moll, 1798) Miliammina fusca (Brady, 1870) Miliolidae sp. div. Indet. Neoconorbina terquemi (Rzehak, 1888) Nodosaria elegans Neugeboren, 1852 Nodosaria sp. Nonion commune (d'Orbigny, 1846) Nonion sp. Nonionella miocenica Cushman, 1926 Orbulina sp. indet Orbulina suturalis Brönnimann, 1951 Orbulina universa d'Orbigny, 1839 Paragloborotalia siakensis (LeRoy, 1939) Plectofrondicularia digitalis (Neugeboren, 1850) Praeorbulina circularis (Blow, 1956) Praeorbulina glomerosa (Blow, 1956) Protoglobobulimina pupoides (d'Orbigny, 1846) Pseudononion japonicum Asano, 1936 Pseudotriplasia sp. Pullenia bulloides (d'Orbigny, 1846) Pyramidulina raphanistrum (Linnaeus, 1758) Quinqueloculina agglutinans d'Orbigny, 1839 Quinqueloculina seminula (Linnaeus, 1758) Quinqueloculina sp. Reophax fusiformis (Williamson, 1858) Reophax scorpiurus Montfort, 1808 Reophax sp. Reticulophragmium venezuelanum (Maync, 1952) Rosalina bradyi (Cushman, 1915) Rotalia sp. Saccammina sp. Sagrina dertonensis (Gianotti, 1953) Sahulia conica (d'Orbigny, 1839) Saracenaria arcuata (d'Orbigny, 1846) Sphaeroidina bulloides d'Orbigny in Deshayes, 1828 Sigmoilopsis schlumbergeri (Silvestri, 1904) Siphonina reticulata (Cžjžek, 1848) Spincterules anaglyptus Loeblich & Tappan, 1987 Spiroloculina canaliculata d'Orbigny, 1846 Spirorutilus carinatus (d'Orbigny, 1846)

Spirosigmoilina tenuis (Cžjžek, 1848) *Stilostomella* sp. Subbotina sp. Tenuitella munda (Jenkins, 1966) Textularia sp. Textularia gramen d'Orbigny, 1846 Textularia mariae d'Orbigny, 1846 Textularia pala Cžjžek, 1848 Trifarina angulosa (Williamson, 1858) Trilobatus bisphericus (Todd, 1954) Trilobatus quadrilobatus (d'Orbigny, 1846) Trilobatus sicanus (de Stefani 1952) *Trilobigerina triloba* (Reuss, 1850) Triloculina gibba d'Orbigny, 1826 Triloculina sp. Trochammina kibleri Venglinsky, 1961 Trochammina sp. Turborotalita quinqueloba (Natland, 1938) Uvigerina aculeata d'Orbigny, 1846 Uvigerina acuminata Hosius, 1895 Uvigerina asperula Cžjžek, 1848 Uvigerina brunnensis Karrer, 1877 Uvigerina grilli Schmid, 1971 Uvigerina macrocarinata Papp & Turnovsky, 1953 Uvigerina peregrina Cushman, 1923 Uvigerina semiornata d'Orbigny, 1846 Uvigerina venusta Franzenau, 1894 Valvulineria bradyana (Fornasini, 1900) Valvulineria complanata (d'Orbigny, 1846) Valvulineria sp.

b) Nannofossils Ahmuellerella octoradiata (Górka, 1957) Reinhardt & Górka, 1967 Arkhangelskiella cymbiformis Vekshina, 1959 Blackites inflatus (Bramlette & Sullivan, 1961) Kapellos & Schaub, 1973 Blackites spinosus (Deflandre & Fert, 1954) Hay & Towe, 1962 Braarudosphaera bigelowii (Gran & Braarud, 1935) Deflandre, 1947 Braarudosphaera bigelowii parvula (Gran & Braarud, 1935) Deflandre, 1947 Braarudosphaera sequela Self-Trail, 2011 Calcidiscus leptoporus (Murray & Blackman, 1898) Loeblich & Tappan, 1978 Calcidiscus premacintyrei Theodoridis, 1984 Calcidiscus protoannulus (Gartner, 1971) Loeblich & Tappan, 1978 Calcidiscus sp. Kamptner, 1950 Calcidiscus tropicus 6-7 µm (Kamptner, 1955) Varol, 1989 sensu Gartner, 1992 Calcidiscus tropicus 8-9 µm (Kamptner, 1955) Varol, 1989 sensu Gartner, 1992 Calciosolenia fossilis (Deflandre in Deflandre & Fert, 1954) Bown in Kennedy et al., 2000

Calculites obscurus (Deflandre, 1959) Prins & Sissingh in Sissingh, 1977 Clausicoccus sp. Prins, 1979 Coccolithus eopelagicus (Bramlette & Riedel, 1954) Bramlette & Sullivan, 1961 Coccolithus formosus (Kamptner, 1963) Wise, 1973 Coccolithus miopelagicus Bukry, 1971 Coccolithus pelagicus (Wallich, 1877) Schiller, 1930 Coronocyclus nitescens (Kamptner, 1963) Bramlette & Wilcoxon, 1967 Cribrosphaerella ehrenbergii (Arkhangelsky, 1912) Deflandre in Piveteau, 1952 Cyclicargolithus abisectus (Müller, 1970) Wise, 1973 Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 1971 Discoaster barbadiensis Tan, 1927 Discoaster deflandrei Bramlette & Riedel, 1954 Discoaster druggi Bramlette & Wilcoxon, 1967 Discoaster exilis Martini & Bramlette, 1963 Discoaster mohleri Bramlette & Percival, 1971 Discoaster multiradiatus Bramlette & Riedel, 1954 Discoaster musicus Stradner, 1959 Discoaster sp. Tan, 1927 Discoaster tanii Bramlette & Riedel, 1954 Discoaster variabilis Martini & Bramlette, 1963 Eiffellithus eximius (Stover, 1966) Perch-Nielsen, 1968 Eiffellithus turriseiffelii (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965 Ellipsolithus macellus (Bramlette & Sullivan, 1961) Sullivan, 1964 Ericsonia robusta (Bramlette & Sullivan, 1961) Edwards & Perch-Nielsen, 1975 Fasciculithus sp. Bramlette & Sullivan, 1961 Helicosphaera ampliaperta Bramlette & Wilcoxon, 1967 Helicosphaera bramlettei (Müller, 1970) Jafar & Martini, 1975 Helicosphaera carteri (Wallich, 1877) Kamptner, 1954 Helicosphaera euphratis Hag, 1966 Helicosphaera intermedia Martini, 1965 Helicosphaera scissura Miller, 1981 Helicosphaera sp. Kamptner, 1954 Helicosphaera walbersdorfensis Müller, 1974 Helicosphaera wallichii (Lohmann, 1902) Okada & McIntyre, 1977 Helicosphaera waltrans Theodoridis, 1984 Holodiscolithus macroporus (Deflandre in Deflandre & Fert, 1954) Roth, 1970 Chiasmolithus sp. Hay et al., 1966 Isolithus semenenko Luljeva, 1989 Lanternithus minutus Stradner, 1962 Lanternithus sp. Stradner, 1962 Lucianorhabdus cayeuxii Deflandre, 1959 Markalius inversus (Deflandre in Deflandre & Fert, 1954) Bramlette & Martini, 1964 Micrantholithus sp. Deflandre in Deflandre & Fert, 1954 Micula staurophora (Gardet, 1955) Stradner, 1963 Nannoconus sp. Kamptner, 1931 Nannoconus steinmannii Kamptner, 1931

Neococcolithes dubius (Deflandre in Deflandre & Fert, 1954) Black, 1967 Neochiastozygus sp. Perch-Nielsen, 1971 Pemma sp. Klumpp, 1953 Pontosphaera exilis (Bramlette & Sullivan, 1961) Romein, 1979 Pontosphaera japonica (Takayama, 1967) Nishida, 1971 Pontosphaera latelliptica (Báldi-Beke & Báldi, 1974) Perch-Nilesen, 1984 Pontosphaera multipora (Kamptner, 1948 ex Deflandre in Deflandre & Fert, 1954) Roth, 1970 Pontosphaera pulcheroides (Sullivan, 1964) Romein, 1979 Pontosphaera pulchra (Deflandre in Deflandre & Fert, 1954) Romein, 1979 Pontosphaera sp. Lohmann, 1902 Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968 Pseudotriquetrorhabdulus sp. Wise in Wise & Constans, 1976 Reinhardtites sp. Perch-Nielsen, 1968 Retecapsa crenulata (Bramlette & Martini, 1964) Grün in Grün & Allemann, 1975 Reticulofenestra bisecta (Hay, Mohler & Wade, 1966) Roth, 1970 Reticulofenestra haqii Backman, 1978 Reticulofenestra hillae Bukry & Percival, 1971 Reticulofenestra lockeri Müller, 1970 Reticulofenestra minuta Roth, 1970 Reticulofenestra ornata Müller, 1970 Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969 Reticulofenestra pseudoumbilicus 6-7 µm (Gartner, 1967) Gartner, 1969 Reticulofenestra reticulata (Gartner & Smith, 1967) Roth & Thierstein, 1972 Reticulofenestra sp. Hay, Mohler & Wade, 1966 Reticulofenestra stavensis (Levin & Joerger, 1967) Varol, 1989

Reticulofenestra tegulata (Bona & Gal, 1985) Coric & Gross, 2004

Reticulofenestra umbilicus (Levin, 1965) Martini & Ritzkowski, 1968 Rhabdosphaera sicca (Stradner, 1963) Fuchs & Stradner, 1977 Rhabdosphaera sp. Haeckel, 1894 Rhagodiscus splendens (Deflandre, 1953) Verbeek, 1977 Rucinolithus havi Stover, 1966 Sphenolithus abies Deflandre in Deflandre & Fert, 1954 Sphenolithus conicus Bukry, 1971 Sphenolithus heteromorphus Deflandre, 1953 Sphenolithus moriformis (Brönnimann & Stradner, 1960) Bramlette & Wilcoxon, 1967 Sphenolithus predistentus Bramlette & Wilcoxon, 1967 Sphenolithus radians Deflandre in Grassé, 1952 Sphenolithus sp. Deflandre in Grassé, 1952 Syracosphaera pulchra Lohmann, 1902 Syracosphaera sp. Lohmann, 1902 Thoracosphaera sp. Kamptner, 1927 Toweius gammation (Bramlette & Sullivan, 1961) Romein, 1979 Triquetrorhabdulus rugosus Bramlette & Wilcoxon, 1967 Triquetrorhabdulus sp. Martini 1965 emend Young & Bown, 2014 Umbilicosphaera bramlettei (Hay & Towe, 1962) Bown et al., 2007 Umbilicosphaera jafari Müller, 1974 Umbilicosphaera rotula (Kamptner, 1956) Varol, 1982 Umbilicosphaera sp. Lohmann, 1902 Uniplanarius sissinghii (Perch-Nielsen, 1986) Farhan, 1987 Uniplanarius sp. Hattner & Wise, 1980 Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968 Zeugrhabdotus sp. Reinhardt, 1965 Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) Deflandre, 1959