Jurassic brachiopods and sedimentological study of the Babiná klippe near Bohunice (Czorsztyn Unit, Pieniny Klippen Belt)

MILAN MIŠÍK1, MILOŠ SIBLÍK2, MILAN ŠÝKORA1 and ROMAN AUBRECHT1

1Katedra geologie a paleontologie PF UK, Mlynská dolina - G, 842 15 Bratislava, Slovenská republika
2Geologický ústav ČAV, Rozvojová 135, 160 00, Praha 6 - Suchodol, Česká republika

(Received March 17, 1994)

Abstract
Approximately synchronous neptunian dykes traverse Middle Jurassic limestones. A new lithostratigraphical member - Bohunice Limestone Formation (Oxfordian - Lower Tithonian) is described. Fine pyroclastic admixture from the distant Upper Tithonian basic volcanism was reenitized. First occurrence of a special microfacies of Contiacian fine-grained limestone breccia with lithoclasts of Kimmeridgian, Tithonian and Neocomian was ascertained. Association of seven brachiopod species of the Bathonian is described.

Key words: Western Carpathians, Pieniny Klippen Belt, Jurassic, Cretaceous, brachiopods, microfacies, neptunian dykes

Sedimentological characteristic of the lithostratigraphical members
An overturned Czorsztyn Succession from the Middle Jurassic to the Neocomian is outcropped in an abandoned quarry Babiná between the villages Bohunice and Krivošláť (Fig. 1 and Tab.1).

1. White and pink crinoidal limestones - Bajocian - Bathonian form the dominant part (left wing) of the quarry. Like in the Mestečská skála klippe (Aubrech, 1992), there is no differentiation in the white crinoidal limestones in the lower layers and the red ones in the upper part, typical in the standard sections of the Czorsztyn Unit. On the contrary the pink crinoidal limestones are situated more at the

Fig. 1. Babiná quarry near Bohunice. 1a - White and pink crinoidal limestones - Bajocian - Bathonian, 1b - Conglomerate intercalation, 2 - Neptunian dykes - Upper Bathonian - Lower Cenomanian, 3a - pink biomicrite with "filaments" and stromatolites - Callovian, 3b - Hardground, 4 - 7 - Bohunice Limestone Formation: 4 - red limestones with "protoplôbibergina" - Callovian, 5 - creamy and pink biomicrites with bivalves and Cadosina parvula - Oxfordian, 6a - pink biomicrite with Saccocoma and higher with Parastomioilastra malonica, 6b - biomicrites with polarity structures, 7 - pink biomicrite with black coated bivalves - Kimmeridgian - Lower Tithonian, 8 - 9 - Sobótka Limestone: 8 - white and creamy biomicrite with Chitinoidea - Middle Tithonian, 9 - pink biomicrite with black-coated bivalves and Crasacollaria - Upper Tithonian, 10 - Walenstowa Breccia - pink and grey limestone breccia with crinoidal matrix - Neocomian.
Tab.1. Stratigraphical summary of the Babinci klippe near Bohunice (Czorszyn Succession)

<table>
<thead>
<tr>
<th>Formation</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comian</td>
<td>limestone breccia (transgression)</td>
</tr>
<tr>
<td>Neocomian</td>
<td>Walentowa Breccia</td>
</tr>
<tr>
<td>Upper Tithonian</td>
<td>Sobotka Limestone</td>
</tr>
<tr>
<td>Middle Tithonian</td>
<td>- with Crasicoelaria</td>
</tr>
<tr>
<td></td>
<td>- with Chitinoella</td>
</tr>
<tr>
<td>Lower Tithonian</td>
<td>Bohunice Limestone Formation</td>
</tr>
<tr>
<td>Kimmeridgian</td>
<td>- with Parastomiosphaera malmica</td>
</tr>
<tr>
<td>Oxfordian</td>
<td>- with Saccocoma</td>
</tr>
<tr>
<td></td>
<td>- with Cadosina parvula</td>
</tr>
<tr>
<td>Callovian</td>
<td>Fe-Mn hardground layer with Stromatactic and „filaments“ - 1 m; filling of clefs with „filaments“ - neptunian dykes</td>
</tr>
<tr>
<td>Bathonian</td>
<td>Smoglewoda (and Krupianka?) crinoidal limestone</td>
</tr>
<tr>
<td>Bajocian</td>
<td></td>
</tr>
</tbody>
</table>

...stratigraphical base of the outcropped sequence. The higher layers are just white and separated by a hardground from the next member - creamy biomicrite with bivalves. The eventual interruption of sedimentation with primary absence of the higher complex of red (red-violet) crinoidal limestones does not seem probable. It is but noteworthy that red biomicrites with "filament" microfacies are the predominant filling of the neptunian dykes and "filaments" are almost entirely absent in the layered succession. The fracturation of the white crinoidal limestones and the filling of these fractures took place before the deposition of the next member - creamy and pinkish biomicrites with "protoglobigerina" microfacies.

Pevný (1969) cited from the white and light-pinkish limestones from Bohunice (obviously this quarry) eight brachiopod species (nearer comment at page 261). The association is according to him typical for the Bajocian.

The crinoidal limestones are biosparites with sandy admixture of clastic quartz grains and small yellowish dolomite lithoclasts. A thin intercalation of the fine-grained conglomerate with a pebble of maximum size 6 cm (spongolite) was found at the point 44. The most numerous are pebbles of the vein-quartz (white, pink, honey-yellow), silicates (spongolites or without organic remnants), dolomites (some of them with traces of boring bivalvians - PI.1, Fig.1), dedolomites, single pyroclastic rock of acid volcanites - tuffite (PI.1, Fig.2) and greywacke with kaolinitized feldspars. The interpretation of the source area has been discussed in another paper (Mišk & Aubrecht, 1994).

The temporary increased transport capacity is reflected also in the matrix (identical with the crinoidal limestone) by the high proportion of heavy minerals; in the thin section 5 zircon grains and one grain of garnet were present. This anomalous intercalation might represent a tempestite or tsunamiite.

The heavy fraction of the sandy admixture in the crinoidal limestones is dominated by zircon, followed by garnet, rutile, tourmaline, apatite with single grains of anatase, titanite and hornblende (Halajová, 1981).

Echinoderm plates (mainly crinoidal columnelia) are most numerous among the bioclasts; benthonic foraminifers (including sessil nubecularids), bivalvian and brachiopod fragments, uniserial bryozoans and serpulid worms (Pl. III, Fig. 1) are common. In the highest part on the edge of the quarry the following association of Bathonian brachiopods was found: Monardithyris ventricosa (Ziet), Cymatorrhynchia ex gr. quadruplicata (Ziet.), "Tererebrata" aff. decipiens Eud. - Desl., Linguitthyris curviconcha (Oppel), Antiptychina aff. bivallata (Eud. - Desl), Cacassela trigona (Quenst.) and Sphenorhynchia lateriplanata Seifert; the paleontological description is on the page 261. It should be noted that the succession there is disturbed by a fault so that the Bathonian rocks contact the Oxfordian strata.

No silicification of the bioclasts, no authigenic quartz occur. Only once in the immediate neighbourhood of the mentioned pyroclastic lithoclast the authigenic anhedral quartz grains have been found; the silica was evidently derived from the volcanic glass. The total absence of chert nodules and other silicification phenomena were probably connected with the absence of sponge spicules in the environment. No voids filled with red micrite known from other localities with corresponding lithotype (Kyjov, Krasin) were found here, but red micrite filling is in the abundant neptunian dykes.

2. Neptunian dykes. Crinoidal limestones are densely penetrated by neptunian dykes with maximum width 35 cm. Their directions are largely scattered; the prevailing extension was NE - SW (Fig. 2), parallel to the strike of the Klippen Belt in this area. The filling is red, partly cream-coloured, often with an irregular lamination, some-
times oblique or lenticular. Biomicrite (wackestones and packstones) laminae alternate with those of micrite and pelmicrite; frequent intraclasts were derived from the fracture walls. The remaining empty spaces were filled by radiaxial calcite cement. The following microscopical characteristic is based on 16 thin-sectioned samples.

From the organic remnants "filaments" predominate (juvenile bivalves of the Bositra-type, rarely also with thicker shells strongly bored by algae, their tiny canals are impregnated by Fe-hydroxides); the "umbrella effect" (sparite formed under the concave side protected against the micrite deposition) was frequently observed. Current constituents are echinoderm plates and foraminifers: *Ophthalmidium cf. carinatum* Leischner, *Ophthalmidium* sp., *Lenticulina* sp., *Marssonella* sp., *Nodosaria* sp., microforaminifers - basal membranes of juvenile foraminifers; single ostracods, globochaete cells, uniserial bryozoans and fucoids occur. Small brachiopods were found in a dyke. Clastic quartz (to 0.25 mm) and fragments of hardgrounds are very rare. Cubes and skeletal crystals of epigenetic pyrite to 0.3 mm (Pl. I, Fig. 3) were observed several times. Tiny sterile microdykes used to penetrate transversally the described neptunian dykes.

There are no direct age indicators concerning the filling of the dykes. It is probably not much younger than the surrounding crinoidal limestones. With regard to the dominant "filament" microfacies and the fact that the dykes do not penetrate into the younger strata, we assume that they are of Upper Bathonian - Lower Callovian age.

3. *Pink limestones with stromatolitic structure - probably Callovian*. They are only 80 cm thick and occur in the middle part of the quarry at the contact of the crinoidal limestones and the hardground. The structure can be characterized as dismicrite with small, not typical stromatolitic - irregular anastomosised voids elongated along the plane of the stratification (Pl. II, Fig. 1). The voids are usually limited by thin-shelled bivalves - "filaments" (shelter porosity). They are filled by the radiaxial calcite cement with fluid inclusions and a younger clear blocky cement in their central parts. Sparitic areas are probably enlarged by the recrystallization what can be deduced from the radial aggregates of calcite around the relics of pellets (Pl. I, Fig. 4). Besides small bivalves unusually frequent microforaminifers (basal membranes impregnated by Fe-oxides - Pl. I, Fig. 5), echinoderm plates, spicles of siliceous sponges filled by calcite, cubecularids, ophthalmids, single small gastropods and worm tubes occur. Quartz grains are very rare but their size is up to 3 mm. The stromatolitic horizon passes in the upper part of the quarry into pink biomicrite with typical "filamentous" microfacies (sample 81).

4. *Pink and red limestone layers impregnated by the Mn-Fe oxides, with black hardground crust (2 cm) on their base - Oxfordian*. Bioinorganicites with "protoglobigerina" microfacies. They contain frequent Globigerina sp., less numerous Ophthalmidium sp., Marssonella sp., Spirillina sp., Lenticulina sp., abundant voids after the radiolarians filled by drussy calcite or dark micrite (these radiolarian "ghosts" resemble the round coprolites - Pl. III, Fig. 2), originally aragonitic bivalves with red coatings (dissolved and filled by micrite, often with collapsed micritic rims), globochaetes cells, ostracods, Cadosina parvula Nagy (Pl. I, Fig. 6), single juvenile ammonite, rhyneholite, phosphatized fish scale, uniserial bryozoan and echinoid spine. Several intraclasts with the red coatings and traces of dissolution and the fragments of Fe-Mn hardgrounds are further signs of the condensed sedimentation. The hardground crust contains 14.3% Mn (= 18.46% MnO), 15.34% FeO, 1.92% SiO2 and 0.54% TiO2. The presence of Cadosina parvula signalized the apperature to Oxfordian.

Bohunice Limestone Formation (new name). Age: Oxfordian - Lower Tithonian. Name: after the type locality quarry Babiná near Bohunice. Thickness: about 11 m. Dominant lithology: creamy and pink micritic and biomicritic limestones with bivalves and brachiopods. According to the detailed lithology, three members were discerned (here No. 5 - 7); preliminary, no formal names were proposed for them. Lateral equivalents: Czorsztyn Limestone (red nodular), Vršatec Limestone (white biothermal) and Rogoźnicki Coquina.

5. *Creamy and pink micritic limestones with bivalves - Oxfordian*. The composition: abundant radiolarians (frequently only their phantoms reminding coprolites), variable amount of "protoglobigerina" (Globigerina sp.), Cadosina parvula Nagy, single Colonisphaera sp. etc. Clastic quartz was absent except one thin-section with a grain 3 mm; cubes of epigenetic pyrite occur. A slight nodularity was observed. The thickness is about 5 m.

6. *Pink micritic limestones - Kimmeridgian - Lower Tithonian*. Generalized characteristic from 5 thin sections: biomicrite mostly packstone with Saccocoma-Globochaete microfacies, further with numerous juvenile ammonites, foraminifers (genera Marssonella, Involutina, Lenticulina, Nodosphaeridium etc.), fragments of brachiopods and bivalves, rare echinoid spines, ostracods and apycti. The voids in the microfossils and macrofossils (mainly in brachiopods) contain an internal sediment with the polarity structures confirming the inverted sedimentary succession. Clastic quartz (terrigenous admixture) is absent; rare cubes of epigenetic pyrite up to 0.4 mm occur. Brachiopods Nucleata bouei (Zejsz.) and Lacunosella aff. spoliata (Suess) from the point 46 indicate the Kimmeridgian. The thickness is about 4.5 m.

7. *Pink micritic limestone with small black-coated bivalves - Lower Tithonian*. They can be differentiated only by means of the microscope based on the presence of Parastomiosphaera malmica (Borza) and the absence of Chitinoidea (Borza, 1984). They are biomicrites with Saccocoma microfacies, abundant globochaete cells, bivalves (originally aragonitic ones with the mentioned black coating, red in the thin-sections), rare large crinoidal columnella (also corroded and with red coatings), Lenticulina sp., Froncularia sp., Bullopora sp., agglutinated foraminifers, several Parastomiosphaera malmica (Borza) (Pl. I, Fig. 7), Cadosina parvula Nagy, Colonisphaera sp., tiny filaments genetically connected probably with globochets, single juvenile ammonites, gastropods, calcified radiolarians, apycti, ostracods, single fish tooth and serpulid
worm *Durandella* sp. (Pl. II, Fig. 3, 4). The author of this genus - Dragastan (1970) described it also from Tithonian but attributed erroneously to the Tintinida. Rare voids with polarity structures occur. The thickness is 1 m.

8. **White and creamy micritic limestones - Middle Tithonian**. They belong to the Chitinoidella zone indicating the Middle Tithonian (Borza, 1984). The generalized description was carried out from the 9 thin-sections: bio-
micrites-packstones with Globochaete-Saccocoma micro-
faces containing *Chitinoidella boneti* Doben (Pl. I, Fig. 8; Pl. III, Fig. 5), voids after the dissolved radiolarians filled by the calcite, foraminifers (*Involutina* sp., *Marssonella* sp., *Lenticulina* sp.), juvenile ammonites, tiny filaments with special sculpture, probably connected with globochaete cells, ostracods, *Colomisphaera* sp., aptocy and basket-like sections probably of a calcareous sponge (Pl. II, Fig. 7). The total lack of the clastic quartz should be stressed once more. A juvenile specimen of *Pygope* sp. proceeded from these limestones.

9. **Pink micritic limestones containing bivalves with the black coatings - Upper Tithonian**. They correspond to the Korowa Limestone Member of Birkenmajer (1977). They can be characterized as biomicrites-wackestones, frequently bioturbated with Crassicollaria microfacies, mostly with *Crassicollaria intermedia* Durand Delga, single *Calpio-
nella alpina* Lorenz and *Chitinoidella* sp., abundant globochaete cells and voids after radiolarians filled by calcite, fragments of bivalves, originally argonitic, with red margins in transmitted light, rarely bordered with black *Mn-
dendrite* (Pl. III, Fig. 3); they were dissolved and filled by the micritic sediment or by the sparite cement; their micritic rims sometimes collapsed. Single bivalves with prismatic layer in the calcite shell, several juvenile ammonites, ostracods, aptocy, brachiopod fragments, *Spirillina* sp., *Marssonella* sp., *Patellina* sp., *Involutina* sp. and *Cadosi-
nas fusca* Wanner have been observed. Corroded and bored intraclasts with the thin Fe-crusts occur, as well as voids with polarity structures.

The peculiar very fine-grained pyroclastic admixture (about 20 grains under 0.15 mm in a thin-section) of basic volcanic rocks containing tiny mostly calcified feldspar (Pl. III, Fig. 4) was identified. The total lack of the clastic quartz pores to a distant aerial transport from the remote volcanic centers probably at the territory of the actual Carpathian Ukraine. Another case was identified from the Kyjov-Pusté Pole klippe, Eastern Slovakia, concerning the same stratigraphical horizon and the identical unit (Mišik, 1992). Basic volcanites (pikrobasaltis and basanites) of the same age occur also in the High-Tatric Unit but those submarine effusions hardly could introduce the volcanic ash into the atmosphere.

10. **Pink and grey fine-grained limestone breccias - Neocomian**. They correspond to the Walentowa Breccia of Birkenmajer (1977) with the exception that Calpionellites was not found in the matrix. The predominate size of clasts is 1 - 2 cm, up to 15 cm. The matrix with echino-
dermal plates is yellowish or red, the clasts are white, creme and red. The microscopical description was derived from the thin-section study of 13 samples.

The most abundant are lithobiosparrudites. Their matrix is dominated by echinoderm plates including typical brachialia of the planctonic crinoids (*Roveacrinidae*?) with syntaxial rims, frequently limited by the crystal faces. Echinoderm plates used to be corroded by Fe-hydroxides along the fissibility. Aptocy with cellular structure and bivalves are rare, phosphatic fish teeth exceptional. Some *Hedbergella* sp. found in the matrix allow to suppose the Hauterivian age. The peculiar phosphate intraclasts and in-
traplasts containing arborescent calcite grains have been already found by us in the Neocomian limestones in the Krasin klippe (Mišik, Šýkora and Aubrecht, in press, Pl. V, Fig. 2). Their syngenetic origin is confirmed by the fact that the phosphate occurs also as the interstitial mass amidst the echinoderm plates in the matrix. The most fre-
quent lithoclasts are biomicrites with the association Sacc-
ccoma + Globochaete + calcified radiolarians (fragments of Kimmeridgian - Lower Tithonian limestones), rarely with *Chitinoidella* (Middle Tithonian); the lithoclasts with *Crassicollaria* (Upper Tithonian - Pl. II, Fig. 6) are rarer and smaller. The breccia lacks the quartz. It contains the same cubex and skeletal crystals of the epipetric pyrite mentioned in the preceding members what confirms that the pyrite originated in the whole Callovian - Neocomian successions in the same time, in one of the post-Lower Cretaceous periods.

Sometimes an association of biomicritic lithoclasts with Saccocoma surrounded by the matrix with the structure of ?Saccocoma (*Roveacrinidae*) bioparise has been observed. It can be explained by the existence of the intraformational breccias already in the Kimmeridgian - Lower Tithonian limestones. The different size of the brachialia in clasts and in the matrix might indicate that they belong to two different genera of planctonic crinoids or it was caused only by hydrodynamic sorting. The existence of the big blocks of Kimmeridgian - Lower Tithonian in the Neocomian breccia cannot be excluded (e.g. the lower-most rockwall on the left flank of the quarry).

11. **Fine-grained limestone breccia with yellow or red matrix and white micritic limestone lithoclasts - Coniacian**. The matrix of this lithosparrudite is formed by the densely packed detritus of double-keeled globotruncanas (Pl. III, Fig. 6) with some hedbergellas, echinoderm plates
with syntaxial rings, fragments of inoceramid bivalves (including isolated prisms) and rare phosphatic fish scales. From foraminifers the following species were determined: *Falsomarginotruncanangustacarinata* (Gandolfi), *F. pseudolinneiana* (Pessagno), *F. coldreniensis* (Gandolfi), *F. desioi* (Gandolfi), *Marginotruncanashneegangst* (Sigal) and *Clavulinoides* sp. (determined by RDr. J. Salaj, DrSc., GUDS). This fauna indicates Cuniclial age; no younger forams have been found.

The lithoclasts belong mostly to the biomicrocites with *Saccocoma* (Kimmeridgian - Lower Tithonian), rarer with *Crassicollaria* (Upper Tithonian - Pl. III, Fig. 5). Neocomian lithoclasts contain small fragments of biomicrocites with *Crassicollaria*; without tintinids in the matrix and with phosphatic intraclasts. A lithoclast of red biomicrocete with the Middle Cretaceous planktonic foraminifers has been found also.

The rock is macroscopically very similar to the Neocomian fine-grained limestone breccia. Such a rock type of Senonian age was unknown from the West Carpathians up till now. We have found it already in 1981 in the outbreak exploited material in the quarry. The breccia should have filled a pocket within the transgression plane on the emerged Upper Jurassic and Neocomian limestones.

12. Quaternary speleothems occur in the form of thin sinter crusts covering the ceiling walls.

Brachiopod fauna of Bathonian and Kimmeridgian

(M. Sibílk)

The preservation of brachiopods found at Babiná is often unsatisfactory. Many of them are fragmentary and only very limited information on their internal structures could be obtained by serial sectioning. The brachiopod fauna from Babiná has been dealt with already by Pévy (1969) who reported *Pychothyris stephani* (Dav.), *Terebratula* pseudocirrhea Arc.-Roché, *Terebratula* solitaria Szajn., *Terebratula* aff. arcelina Arc.-Roché, *Terebratula* lineata Roll., *Terebratula* cranae Dav., *Lobothyris ventricosa* (Hartm.) and *Sphenorhynchia rubrisaxensis* multicosata (Rothl.). All species came from the light-coloured crinoidal limestone of Bajocian age.

I focused my attention on younger beds and determined the following species: sample 41 (Bathonian) - *Monsardithys ventricosa* (Ziet.), *Cymatohynchia* ex gr. quadruplicata (Ziet.); sample 43 (Bathonian) - *Monsardithys ventricosa* (Ziet.), *Terebratula* aff. decipiens Eud.-Desl., *Linguothyris curvicorncha* (Oppel), *Antitycyna* aff. bifallaxa (Eud.-Desl.), *Caucasella trigona* (Queht.), *Sphenorhynchia lateroplanata* Scifert.

The great similarity to the brachiopods from the ammonite-proved Bathonian of the Kostelec locality helped when the age of the sample 41 and 43 was considered. From the higher horizon (sample 46) proceeded *Nucleata bowei* (Zejszn.) and *Lacunosella* aff. *spoliata* (Suess) most probably of Kimmeridgian age.

Descriptions

Monsardithys ventricosa (Zieten, 1830)

(Pl. IV, Fig. 4)

1969 *Lobothyris ventricosa* (Hartmann) - Pévy, p. 150, Pl. 29, Fig. 3.

1971 *Monsardithys ventricosa* (Hartmann-Zieten) - Alméras, p. 202, Pl. 7, Figs. 1 - 2; Pls. 8 A - B; Pl. 9; Pl. 12, Fig. 1; Text - Figs. 57 - 62 (cum syn.).

1979 *Monsardithys ventricosa* (Zieten) - Sibílk, p. 53, Pl. 8, Fig. 1.

30 specimens of smaller size and mostly incomplete, up to 30.0 mm long, 24.5 mm wide and 15.5 mm thick. Extensive description and discussion of the species was given by Alméras (1971).

Bajocian - ?Bathonian of Vršatec, Lower Bathonian age from Algeria was reported by Alméras (1971).

Babiná - samples 41 and 43, Dohňany, Mestečko, Podhorie, Vršatec, Malé Karpaty Mts. (Próstodolok).

„*Terebratula* aff. decipiens”

Eud.-Deslengchamps, 1873

1966 "*Terebratula* aff. decipiens” Eud.-Deslengchamps - Sibílk, p. 138, Pl. 3, Fig. 3.

5 fragmentary specimens identical with those cited above from Kostelec.

Babiná - sample 43, Kostelec.

Nucleata bowei (Zejszn, 1846)

1979 *Nucleata bowei* (Zejszn.) - Sibílk, p. 56, Fig. 4 (cum syn.).

2 incomplete specimens showing characteristic features of the species.

Oxfordian - Tithonian (?L. Berriassian).

Babiná - sample 46, Kostelec, Nižná, Krchý vrch.

Linguothyris curvicorncha (Oppel, 1863)

(Pl. IV, Fig. 3)

1863 *Terebratula curvicorncha* Opp. - Oppel, p. 206, Pl. 5, Fig. 6.
1923 *Terebratula* (Glossothyris) *curviconcha* Opp. - Trauth, p. 193 (cum syn.).

1966 *Linguithyris curviconcha* (Oppel) - Sblík, p. 139, Pl. 4, Fig. 1.

1967 *Linguithyris curviconcha* (Oppel) - Kunz, p. 267, Pl. 1, Figs. 3 - 6.

1993 *Linguithyris curviconcha* (Oppel) - Radulovic' and Rabrenovic', p. 119, Pl. 2, Fig. 6.

12 specimens up to 20.0 mm in length and 21.0 mm in width. They reveal subangular sulcation of anterior commissure conformable well to that of the material from Kostelec as figured by Sblík (1966).

Bathonian; rarely Bajocian. Aalenian occurrences were reported from Italy (Rovereto).

Antipythina aff. bivalvata

(Eud.-Deslongchamps, 1859)

(Pl. IV, Fig. 2)

1979 *Antipythina aff. bivalvata* (Eud.-Deslongchamps) - Sblík, p. 60, Pl. 10, Fig. 3.

9 specimens up to 15.0 mm long and 13.0 mm wide. Punctuation clearly visible. The internal structure revealed short dental lamellae, shallow septalum, very deep sockets with strongly developed socket ridges, and a high septum.

The specimens agree well with *Antipythina aff. bivalvata* from Vršatec as was presented by Sblík, 1979. In that paper the differences from both A. *bivalvata* and A. *puchoviensis* Pevný were pointed out.

Babiná - sample 43, Vršatec (?Bathonian).

Caucasella trigona (Quenstedt, 1852)

(Pl. IV, Fig. 1)

1852 *Terebratula* trigona - Quenstedt, p. 548, Pl. 36, Fig. 34.

1922 *Rhynchoellina trigona* Quenst.-Trauth, p. 235 (cum syn.).

1964 *Gnathorhyncha trigona* (Quenstedt, 1851) - Pevný, p. 169, Pl. 6, Fig. 2.

1966 *Gnathorhyncha trigona* (Quenstedt) - Sblík, p. 155, Pl. 3, Fig. 1.

1969 *Gnathorhyncha trigona* (Quenstedt, 1851) - Pevný, p. 146, Pl. 28, Fig. 2.

1970 *Caucasella trigona* (Quenstedt) - Tchorzhevskij, p. 53, Figs. 3 - 4, Text - Fig. 3.

4 specimens reach 11.0 mm in length, 15.0 mm in width and 8.5 mm in thickness. Their outlines and length/width ratios are varied. This supports Trauth's opinion (1922) of the difficulties in distinguishing this species externally from *Rhynchoellina trigona* Rothpletz, 1886. The generic attribution of *"trigona"* to *Caucasella* was proved by Tchorzhevskij (1970) who ascertained the internal structure of *"trigona"* without dorsal septum which is the main character distinguishing *Caucasella* from *Gnathorhyncha*.

Bathonian; the specimens studied by Tchorzhevskij (1970) came from Bajocian.

Sphenorhyncha lateroplanata Seifert, 1963

1963 *Sphenorhyncha lateroplanata* n. sp. - Seifert, p. 176, Pl. 10, Fig. 16, Text - Fig. 26.

1 specimen measuring 25.0 x 21.6 x 14.2 mm. It reminds one of the Bajocian *Sphenorhyncha plicatella* (Sow.) or some variants of Callovian *Sphenorhyncha ferryy* (Eud.-Desl.) but differs from them in the development of large lateral planareas.

Babiná - sample 43.

Cymatorhyncha ex gr. quadriplicata (Zieten, 1830)

1966 *Rhynchoellina ex gr. quadriplicata* (Zieten) - Sblík, p. 146.

?1969 *Cymatorhyncha quadriplicata* (Zieten) - Pevný, p. 143, Pl. 28, Fig. 1.

25 mostly fragmentary specimens have been seen up to about 23.0 mm long, 25.0 mm wide and 16.0 mm thick. The similarity to the Bajocian *Cymatorhyncha quadriplicata* seems apparent. The present material is identical with that from Kostelec (Sblík, 1966) and also does not warrant further discussion of the relations to the highly variable Zieten's species.

Babiná - sample 41 and 43, Mestečko, Kostelec.
Lacunosella aff. spoliata (Suess, 1858)

1956 *Rhynchonella aff. spoliata* Suess - Ksiazkiewicz, p. 208, Pl. 23, Fig.7.

1 specimen with dimensions 17.6 x 17.8 x 11.0 mm. It agrees to the mentioned Polish find that is of Kimmeridgian age.

Babiná - sample 46.

Summary and interpretation

An inverted succession of the Czorszyn Unit with following peculiarities outcrops in the quarry Babiná: crinoidal limestones are not differentiated into the lower white and upper red part, the Czorszyn red nodular limestones are absent (both pattern as well as a conglomerate intercalation in the crinoidal limestones are characteristic for the Mesecťó development - Aubrecht, 1992); instead of Czorszyn Limestone the Bohunice Limestone Formation (new name) is present; the Rogoznik coquina lacks.

During the Bajocian a shallow-water sedimentation of the crinoidal detritus influenced by the coastal currents and by the transport of the terrigenous clastics took place. One conglomerate intercalation with pebbles up to 6 cm could be interpreted as tempestite. The pebbles belong to Liassic spongoitites, Triassic dolomites, probably Lower Triassic sandstones and pyroclastics probably of Permian age. The higher part of the crinoidal limestones belongs to Bathonian as was proved by the brachiopods (seven species have been described). In the Upper Bathonian and Callovian a sedimentary tectonics (faulting) took place; the clefts were filled mostly by the red micrite with the "filament" microfacies forming neptunian dykes. The red Bathonian - Callovian limestones with the "filament" microfacies occur frequently in other profiles but here their continuous beds were extremely reduced to 1 m and accompanied by the stromatolites-like horizon.

The condensed sedimentation at the beginning of the Oxfordian in the limestones with *Globuligerina* and first *Cadosinidae* led to the precipitation of the Mn-Fe hardground crust. The transport of terrigenous material ceased completely. The deepening of the sedimentation area resulted in the predominance of the plankton: *Globuligerina*, radiolarians, *Cadosinidae* and later, in the Kimmeridgian and Tithonian *Saccocoma*, *Tintinnidae* and ammonoids (only their juvenile specimens were found). The bivalves with the black coatings have been brought from time to time from the shallower waters but they occur only sporadically in comparison with the other localities of the Czorszyn Succession (e.g. Vršeček: Mišik, 1979, p. 22; Kyjov-Pusté Pole: Mišik and Šykora, 1993). The occurrence of the brachiopods in the Kimmeridgian strata indicates that the environment was not very deep. The differentiation of the Lower and Middle Tithonian strata was carried out due to the presence of the zonal microfossils *Parastomiosphaera malmica* and *Chitinoidea*.

A very fine-grained pyroclastic admixture from the remote centers of the basic volcanism was enregistered in the Upper Tithonian limestone.

The Neocomian (its Hauterivian part was proved by hedbergellas) is characterized as in the other localities of the Czorszyń Unit by the shallowing signaled by the crinoidal detritus. It was accompanied by the synsedimentary faults. In their probably submarine scarps the Kimmeridgian - Upper Tithonian strata were uncovered what is evidenced by their abundant clasts.

A Coniacian *Globotruncana*-bearing limestone with lithoclasts of the Kimmeridgian, Tithonian and Middle Cretaceous has been found in a material proceeded from an exploitation outburst. Such a special lithotype (microfacies) was not found in the Western Carpathians yet.

As to the formal lithostratigraphic units the following remarks are needed. Crinoidal limestones are not differentiated into the white and the red ones (Smolegowa and Krupiankia Limestones according to Birkenmajer, 1977). Their typical upper red strata are absent. Such a lack in some Polish localities was interpreted by Birkenmajer (1977, p.53) by the intrastratal erosion caused by Meso-Cimmerian movements. In our case the lateral transition of facies is more probable.

Creamy and pink micritic limestones locally with bivalves and brachiopods (Oxfordian - Lower Tithonian, here No. 5 - 7) have not participated in the list of the lithostratigraphic units proposed for the Klippen Belt by Birkenmajer (1977). We suggest a new term for them - Bohunice Limestone Formation. Its lateral equivalents are red nodular Czorszyn Limestone, Oxfordian biothermal Vršeček Limestone and Rogoznik Coquina. The sporadic occurrence of the originally aragonitic bivalves with black coatings and local accumulations of the bidentitis remind some patterns of the Rogoznik Coquina. The Birkenmajer's (l. c.) term Walentowa Breccia was accepted for the pink breccious Neocomian limestones.

For the time being no name is proposed for the Coniacian fine-grained breccious limestone; further occurrences are needed.

As to the diageneric patterns, the total lack of the authigenic feldspars as well as authigenic quartz should be stressed; the only exception - anhedral authigenic quartz has been found in the immediate vicinity of the lithoclast of an acid pyroclastic rock. The skeletal aggregates of the epigenetic pyrite were present in all strata from the Bajocian up to Neocomian; then they were formed after the Lower Cretaceous.

Acknowledgements. Authors are grateful to RNDr. J. Salaj, DrSc. (GUĐS) for determination of the Senonian foraminifers. Financial support was provided by a GGD grant from the Ministry of Education and Science of the Slovak Republic.

1 Brachiopods from the Babiná crinoidal limestone, Babiná klippe near Bohunice, sample 43; the specimens were coated with ammonium chloride before photographing. 1. - *Caucanaella trigona* (Quaest.), x2.5. 2 - *Antiptychina aff. bivalata* (Eud.-Desl.), x2.5. 3 - *Lingulodendryps curviconcha* (Oppel), x1.5. 4 - *Monsardthyrus ventricosa* (Ziet.), x1.5. 2. General view of the Babiná quarry.
Jurské brachiopoda a sedimentologické studium bradla Babiná pri Bohuniciach (čoršťanská jednotka, pienskodobé pásma)

Bradlo Babiná obsahuje obvyklevrný vrstvový slúch, ktorý má v porovnaní so standardnou čoršťanskou sukcesií tiez obyčajnosti skôr získaného. V pravdepodobnosti sa začalo v pleistocénu, kedy sa v okolí Babiného mesta objavili prvá brachiopodová fauna. V mierne východnej časti Babiného mesta sa objavilo niekoľko radov špeciálnych faun, ktoré sú charakteristické pre toto región.

Kondenzovaná sedimentácia na začiatku oxforda (vápenc s "protopogliberitovou" mikroflaou a prvými kadosánmi) sa prejavila vytvorením Fe-Mn kory - hardgroundu. Úplne súčasné so spodným pienským vrstvou, kedy sa objavila prvé vápencove fauna, ktorá sa rýchlo rozšírilá po celom región.

Vo vrchom bol velkým množstvom brachiopodov, ktoré sa objavili na vrchom Babiná, kde sa objavili prvá pienská vrstva. Vzhľadom na to, že v ňom sa objavili prvá pienská fauna, sa takéto fauny začali objavovať v rôznych oblastiach regiónu.

References

Aubrecht, R. 1993: Clastic admixture in Dogger crinoidal limestones of Carpathian Unit. Geol. Carch. 44, 2; 103 - 111.

Birkmann, B. 1977: Jurassic and Cretaceous lithostratigraphic units of the Piennes Klippen Belt, Carpathians, Poland. Stud. Geol. pol., 45, 1 - 158.

