JURASSIC STROMATACTIS MUD-MOUNDS IN THE PIENINY KLIPPEN BELT (WESTERN CARPATHIANS) - PETROGRAPHY AND STRATIGRAPHY

Roman AUBRECHT1, Michał KROBICKI2, Bronisław Andrzej MATYJA3, Andrzej WIERZBOWSKI3 & Ján SCHLÖGL1

Abstract
Five occurrences of stromatactis mud-mounds were found in the Czorsztyn Unit of the Pieniny Klippen Belt (Western Carpathians) – in western Slovakia (Šļavnické Podhorie, Štepinčá skala, Babiná), and in the Transcarpathian Ukraine (Priborzhavskoe and Veliky Kamene). Their stratigraphic range is from Bajocian to Early Tithonian, i.e. they belong to the latest known true stromatactis mud-mounds. At Štepinčá skala, Priborzhavskoe and Veliky Kamene, flat mound shape of the stromatactis beds is revealed. The wall-rocks are invariably micritic to pelmicritic mudstones, wackestones to packstones with fauna of pelecypods, brachiopods, ammonites, crinoids etc. All the mentioned occurrences contain networks of stromatactis cavities. At Šļavnické Podhorie, Priborzhavskoe and Veliky Kamene, the stromatactis cavities occur as low as in the underlying Bajocian crinoidal limestones. This testifies to their biological origin since the inorganic models of stromatactis origin so far presented are hardly applicable to the wall rock sediment formed by crinoidal skeletal detritus. Occurrence of stromatactis in the crinoidal limestones below the mounds indicates that these sites were already pre-disposed as sites of mud-mounds growth still before the change from skeletal to mudstone deposition. The stromatoclast cavities are filled with radiial fibrous calcite (RFC), then sometimes by internal sediment and, finally, by clear blocky calcite. Some fillings were incomplete, with empty voids in the centres. In two instances, at Babiná and Šļavnické Podhorie localities, tests of the cave-dwelling ostracodes Pokornyopsis sp. were found, surrounded by the final stages of the RFC. Presence of cave-dwellers indicates that stromatactis cavities for a certain period of time formed an open-space network through which these ostracodes and their larvae could migrate. In addition to stromatactis cavities, numerous examples of seeming recrystallization were observed in all the samples that were petrographically examined. Radial fibrous calcite encloses patches of matrix and isolated allochems. The RFC crystals are perpendicularly to the substrate, hence they could not originate due to recrystallization, because they would not be able to re-orient themselves perpendicularly to the allochems they meet on their way. The interconnection of all the “floating”allochems in three dimensions seems very unlikely, as in many cases the “floating”allochems are much smaller than both the surrounding RFC crystals and the average distances between them. The same was observed in perpendicular–made thin-sections of sparry portions of the rocks. There is a conflict between initially empty cavities (internal sediment, cave-dwelling Pokornyopsis sp. etc.) and seeming “recrystallization” related to the same RFC filling the stromatactis cavities. The allochems apparently served as nucleation sites on which the RFC crystals started to grow. The patches of micritic host-rocks enveloped by the RFC also had to be different from the surrounding and supporting matrix. The most likely explanation is that the RFC crystals of the “recrystallization” spar grew at the expense of decaying microbial muclage. The mucus might enclose peloidis, allochems or whole mudstone patches which “floated” in the mucus and served as nucleation sites for RFC. The entire mud-mound most probably represented a microbially bound autochthonous muclite; the stromatoclasts and stromataloid cavities originated where clearer muclage patches occurred. Many aspects favour the presence of mucus, as a disorganized assemblage of various protozoans, rather than of sponges and other metazoan organisms.

Key words: mud-mounds, stromatactis, Jurassic, Pieniny Klippen Belt, Western Carpathians

1 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina – G, SK-842 15 Bratislava, Slovakia, e-mail: Aubrecht@nic.fns.uniba.sk, schlogl@nic.fns.uniba.sk
2 Department of Stratigraphy and Regional Geology, University of Mining and Metallurgy, Al. Mickiewica 30, PL-30-059 Kraków, Poland, e-mail: krobicki@geo.agh.edu.pl
3 Institute of Geology, Warsaw University, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, e-mail: baw@geo.uw.edu.pl, aw@fis.pw.edu.pl
Introduction

Stromatolitic mud-mounds are an enigmatic and still unexplained phenomenon, despite a long period of investigation. The mounds, unsupported by any metazoan framework, form hills or banks that were up to thousand meters in thickness and are believed to have withstood water currents and, possibly, wave motion. A microbial origin, together with in situ formation and early cementation of the carbonate mud of the mounds, is widely accepted. Most workers consider them to be microbial reefs. However, there is still no agreement of opinions concerning the origin of stromatolitic cavities. These opinions have been summarized several times in the literature. There are two groups of approaches. The first prefers purely physical or chemical origins, for instance internal erosion and reworking of small cavities (e.g. Kukal, 1971; Wallace, 1987; Bridges & Chapman, 1988; Matyszkielwicz, 1993, 1997), dewatering or fluid escape (Heckel, 1972; Desbordes & Maurin, 1974; Bernet-Rollande et al., 1981), neomorphism or recrystallization of the calcareous mud (Black, 1952; Orme & Brown, 1963; Ross et al., 1975), dynamic metamorphism (Logan & Semeniuk, 1976), slumping (Schwarzacher, 1961), fresh-water leaching (Dunham, 1969) or, recently, presence of clathrate hydrates in the calcareous mud, after which the stromatolitic cavities remained (Krause, 1999). The second group of opinions supposes that the cavities originated by decomposition of an unknown soft-bodied organism or by nemorphism of carbonate-secreting organisms, involving a wide scale of representatives from stromatoporoids (Duport, 1881, 1882; Lowenstam, 1950; Carozzi & Zadnik, 1959), through sponges (Bourque & Gignac, 1986; Bourque & Boulvain, 1993), bryozoans (Textoris & Carozzi, 1964), algae (Philcox, 1963; Textoris, 1966; Coron & Textoris, 1974), stromatolites (Cross & Klosterman, 1981), microbial colonies (Tsien, 1985), to burrowing activity of crustaceans (Shinn, 1968). Some authors suggest that stromatolite originated from a combination of several factors, such as microbial binding of the sediment and excavating of the unbound mud (Bathurst, 1982; Pratt, 1982) or from a succession of sponges and microbial colonies (Flajs & Hüssner, 1993; Flajs et al., 1996). Some stromatolites-like cavities also occur in chemosynthetic mud-mounds, related either to hydrothermal or cold methane seeps (e.g. Belka, 1994, 1998; Kauffman et al., 1996; Mounji et al., 1998; Peckmann et al., 1999).

As stated several times in the literature, stromatolitic cavities are time-dependent structures and as such we may suppose that their origin is not related to inorganic processes.

Although there are some inorganic factors influencing carbonate precipitation which fluctuate with time (e.g. sea-level change, water chemistry or temperature), the inorganic processes which were believed to be responsible for origin of stromatolitic cavities, e.g. internal erosion, dewatering, recrystallization, dynamic metamorphism, slumping or fresh-water leaching, are not time-dependent. The first stromatolitic cavities were reported from Neoproterozoic (Pratt, 1995) and Cambrian times (James & Gravestock, 1990). They reach their maximum in Devonian and Carboniferous; their latest occurrences were reported from the Late Jurassic (Matyszkielwicz, 1993, 1997; Jansa et al., 1989; Pratt, 1995). Some later occurrences of stromatolitic-like cavities were also mentioned in the literature, for instance by Pascal & Przybyla (1989), Pratt (1995, Fig. 498) and Neuwiler et al. (1999, Fig. 2a) from Aptian-Albian of northern Spain, in Early Albian mud-mounds of Pyrenees (Camerot, 2001); then, some younger stromatolitic-like cavities were found in Turonian mud-mounds of Tunisia (Camoin & Maurin, 1988), in Late Cretaceous methane-seep mounds of U.S.A. (Kauffman et al., 1996, p. 801) and in Holocene lithoherms in the Straits of Florida (Neumann et al., 1977). All these younger cavities are not widespread and it is questionable whether they are true stromatolitic cavities. The Jurassic period is thus one of the last ones with reported true stromatolitic mud-mounds.

Stromatolitic mud-mounds in the Jurassic are not common; much more common are sponge mud mounds (Hammes, 1995 and the literature overviewed therein) in which some isolated stromatolitic-like cavities may also occur (Leinfelder & Keupp, 1995, p. 19). Mud-mounds with stromatolitic structures were also reported from the Early Jurassic of the Eastern Alps (Mathur, 1975), Early Jurassic of Sicily (Jenkyns, 1970), Oxfordian of offshore Nova Scotia (Jansa et al., 1989, Figs. 4B, 6; Pratt, 1995, Fig. 45A), and Oxfordian of epicratonic Poland (Matyszkielwicz, 1993, 1997). Similar cavities were reported from the Late Hettangian Hierlatz Limestone of the Eastern Alps by Mazzulo et al. (1990), but they interpreted them as features caused by karstic dissolution. Stromatolitic-like voids, that were mentioned from concretions in Aalenian mudstones of the Swiss fore-Alpine platform (Wetzol & Alia, 2000), may be of different origin. These latter features are similar to those reported by Hovland et al. (1987) from Recent methane-seep pockmarks of the North Sea. Their methane-seep origin is easily detectable by isotopic study, displaying very low $delta^{13}C$ in most components.
Figure 1: Localities. A – position of the Slovak sites and Ukrainian sites relative to the Pieniny Klippen Belt, B – position of the sites studied within the Váh Valley (Slovakia). 1 - Slavnické Podhorie, 2 - Štepincká skala, 3 - Babiná, 4 - Priborzhavskoe, 5 - Veliky Kamenets.
Figure 2: Mid-Late Jurassic lithostratigraphy of the Czorsztyń Unit.

This paper deals with newly found occurrences of Middle to Upper Jurassic (Bajocian to Lower Tithonian) stromatolitic mudmounds in the Western Carpathians in Slovakia and Ukraine (Fig. 1). In this paper, we describe these mounds for the first time: their appearance, petrography and preliminary stratigraphy. Some of the occurrences are still under investigation and the results presented here are preliminary. Nevertheless, all the occurrences mentioned seem to represent true stromatolitic mud-mounds, without substantial quantities of sponges, Shamovella (Tubiphytes), laminated stromatolites or corals. In three of the localities examined, surprising occurrences of stromatolitic cavities in skeletal crinoidal limestones may be observed.

Geological setting

The Western Carpathians are a part of the Alpine mountain chain situated between the Eastern Alps and Eastern Carpathians, at the northern margin of the Pannonian Basin. Their principal subdivisions are Inner, Central and Outer Western Carpathians. The Pieniny Klippen Belt represents a boundary zone between the Outer and Central Western Carpathians. It is the most complex of all the Western Carpathian zones as it was affected by at least two major deformation phases: the first, Laramian nappe structures, formed in the latest Cretaceous and earliest Paleogene, the second one, which disturbed the previous structure, was an Oligocene-Early Miocene orogenic phase, dominated by lateral movement and transpressional deformation in a large shear-zone. This process created recent unique klippen structure, where limestone successions (mostly Jurassic to Early Cretaceous) form blocks and tectonic lenses enveloped in softer marlstones and claystones (predominantly Late Cretaceous). Crystalline basement of these sedimentary units is not known; it was most probably consumed by underthrusting beneath the Central Carpathian block. Despite this extensive tectonic deformation, the Pieniny Klippen Belt has almost no metamorphic or thermal overprint and its units contain perfectly preserved fossils and sedimentary structures.

All the localities examined herein belong to the Czorsztyń Unit (Fig. 2) (including the Ukrainian Kamenets Zone) which occurred in subtidal to neritic environments on a relatively shallow-water shelf on the hypothetic Czorsztyń Swell (sensu Mišik, 1994; Ridge – sensu Birkenmajer, 1986, 1988). In the Aalenian, the sedimentary area lacked contrast due to the dominant deposition of marlstones and claystones in that time (Harczagrand Shale and Skrzypny Shale formations - see Birkenmajer, 1977). In the Bajocian, uplift of the Czorsztyń Swell was strongly accentuated and resulted in deposition of white crinoidal limestone (Smolegowa Limestone Fm.) followed by red crinoidal limestone (Krupianka Limestone Fm.). In more shallow parts of the Czorsztyń sedimentary area, these crinoidal limestones were mostly undifferentiated (Aubrecht et al., 1997). After gradual sea-level rise during the latest Bajocian and Bathonian to Oxfordian, the deposition of the crinoidal limestone gave way to pelagic red nodular ammonitico rosso-type limestones of the Czorsztyń Limestone Formation which was widespread in the Czorsztyń Unit between the Callovian and Late Tithonian. However, some not-nodular equivalents of the Czorsztyń Limestone Formation were found locally by Andrusov (1945, p. 17). This variety was also later found at other places and was named Bohunic Limestone Formation by Mišik et al. (1994). The mutual relationship between the two varieties is mostly unknown, as their lateral transitions are usually not preserved in the individual klippen, except for a few klippen in the western Polish part of the Pieniny Klippen Belt (Wierzbowski, 1994). Following Aubrecht et al. (1997), the Bohunic Limestone Formation represents mud mounds or mud banks with stromatolitic structures, surrounded by nodular limestones.

Methods

The field study involved section measurement and sampling, followed by detailed petrographic
Jurassic stromatolites mud-mounds in the Pleniny Klippen Belt

Figure 3: Lithological profiles of the sites examined in Slovakia.

and microfacies study. Stratigraphic analysis is just at the beginning, therefore only preliminary stratigraphic dating has been made, mostly based on microfacies. About 100 thin-sections and slabs were studied petrographically, and some polished thin sections also under CL. Slabs with stromatolitic cavities were also examined by staining methods, mainly by potassium ferricyanide (Friedman in Carver, 1971, p. 515) to reveal zonation on the basis of bivalent ferroan content (bivalent Fe in the calcite produces blue colour). Small polished slabs of the cement-rich parts were etched with dilute acetic acid and studied under SEM.

Description of localities

Slavnické Podhorie
The site examined is in the middle part of Váh River valley, near the village Slavnické Podhorie, at the foot of the Biele Karpaty Mts (Fig. 1). It represents a tectonically overturned klippe cut by an abandoned quarry (Pl. I, Fig. 1). A 32 m thick section was investigated in the southern part of the quarry where a core of stromatolitic mud-mound is exposed (Fig. 3).

The major part of the quarry reveals the crinoidal limestones. The lower part of the measured section is formed by crinoidal limestone, about 13 meters in thickness, which yielded, approximately in 12 m level, a fragment of the ammonite *Parkinsonia* sp. indicating uppermost Bajocian or lowermost Bathonian. The overlying pink to red micritic limestones (mudstones) are dominated by "filamentous" microfacies which is usually of latest Bajocian to Callovian age in the Czorsztyń Unit, and does not range into Oxfordian (cf. Wierzbowski et al., 1999). Stromatolitic cavities appear already in the crinoidal limestone (9-13 m), but they reach their maximum development in the micritic limestones (15-28 m) (Pl. I, Fig. 2-4). At 28 m from the base of the section, the stromatolitic cavities disappear. Since the stromatolitic cavities are approximately parallel to stratification, the section studied is probably situated in the core of the mound. As the klippe represents just a large tectonic block, there is no transition preserved to the offmound facies.

Štepnická skala
This locality is a small abandoned quarry just below the top of Štepnická skala Hill, SSW of
Púchov town (western Slovakia), about 500 m SE from the small settlement of Štepence (part of the village Streženice, Fig. 1). The site was firstly mentioned by Andrusov (1945, p. 17) who recognized here the "not-nodular" analog of the Czorsztyń Limestone Formation and called it "ammonite breccia". The klippe is tectonically overturned. Three sections through the klippe (southern, middle and northern parts) were studied, showing relatively high lateral facies variability. A flatstromatactis mud mound is situated in the middle section (Fig. 3; PI. II, Fig. 1-2).

Massive pale to pink crinoidal limestone occurs at the base of the succession. Its overall thickness could not be measured as the contact with underlying formation is nowhere visible. The crinoidal limestone gradually passes up into red nodular limestone (Czorsztyń Limestone Formation, ammonitic rosso-type facies). The thickness and development of this formation is variable in the individual sections. In the northern part of the klippe the deposits attain 8 m in thickness, and show intercalation of Bostrica limestone (1 m thick), which is a well-sorted Bostrica coquina. However, the nodular limestones attenuate in the middle part of the klippe, reaching only 2 m in thickness. The mudstone with nests of crinoids overlies the nodular limestone and reaches about 7 m in thickness; in the southern section it is only about 1-2 m thick. Still higher, in all three sections, pink to yellowish limestone (mudstone) appear, with considerable amounts of brachiopods and ammonites. These faunal elements are also present in the previously mentioned facies but they do not occur so abundantly.

In the middle section, two layers with stromatactis cavities occur at the base of the mudstones (PI. II, Fig. 1-3). Their maximum thickness is about 2 m and they laterally wedge out over about 10 m distance in both directions, i.e. the stromatactis beds form a flattened mound shape. They may represent either a central cross-section through a flat mound, or a marginal cross-section through a more elevated mound. The microfacies is characterized by small gastropods and mass occurrences of Globuligerina sp. which is typical of the Oxfordian in the Czorsztyń Unit. Although the facies development is similar to that of the overlying mudstones, stromatactis cavities are not recognized higher in these beds, except for some isolated cavities which were found in the beds just overlying and underlying the mound. Some stromatactis-like cavities were also found in nodules of Ammonitico Rosso facies in the middle section (PI. II, Fig.4). In this horizon, the ammonite Morphoceras sp. was found, indicating the lowermost Bathonian. The mudstones are about 4 m thick in the southern section; the other two sections do not reach the stratigraphic top of the mudstones. These deposits are followed by Saccocoma limestones occurring only in the southern section.

Babíná
This locality is a quarry located at the foot of Babíná Hill, on the road between Bohunice and Krivoklášt villages in the Middle Váh Valley in western Slovakia (Fig. 1). The locality has been described in details by Mišík et al. (1994). An overturned Czorsztyń sequence from the Middle Jurassic to the Neocomian crops out in the quarry (Pl. III, Fig. 1). White and pink crinoidal limestones are exposed in the main SE part of the quarry. The crinoidal limestones are cut by numerous neptunian dykes filled with red mudstones of "filamentous" microfacies (Mišík et al., 1994, Aubrecht & Túnyi, 2001). The rest of the quarry shows red to pink micritic limestones (mudstones) of the Bohunice Limestone Formation which gradually pass upwards into Tithonian-Neocomian limestones. The best section showing the lowermost part of the mudstones begins 5 m above the floor of the quarry (Pl. III, Fig.2).

Stromatactis cavities of small size already occur in the basal bed of mudstones which is about 80 cm thick (Pl. III, Fig. 4) (Mišík et al., 1994). This bed is dominated by "filamentous" microfacies which indicates latest Bajocian to Callovian age (cf. Wierzbowski et al., 1999). The same microfacies also represents the infillings of the neptunian dykes cutting the underlying crinoidal limestones. At the top of the mudstone bed a black manganese crust representing a non-deposition surface occurs. Above this crust, pink micritic limestones (mudstones) appear again, with mass occurrence of Globuligerina planktonic foraminifers, typical of the Oxfordian in the Czorsztyń Unit (Wierzbowski et al., 1999). These micritic limestones, however, are free of stromatactis cavities. The cavities reappear higher in the section (Pl. III, Fig. 3, 5-6), in limestones (mudstones) containing numerous ossicles of the planktonic crinoid Saccocoma, which is typical for the Kimmeridgian and Lower Tithonian (cf. Myczyński & Wierzbowski, 1994; Wierzbowski, 1994). These youngest Jurassic mudstones are erosionally cut by Neocomian breccias.

Priborzhavskoe
This section occurs in an extensive active quarry located at the SW margin of the Priborzhavskoe village on the left side of the Borzhava River in the Transcarpathian Ukraine. The quarry is in a huge klippe of Lower Jurassic to Lower Cretaceous rocks (see Kruglov, 1971, 1986), surrounded by soft Upper Cretaceous marls. The
Jurassic stromatolite mud-mounds in the Pieniny Klippen Belt

Klippe consists of several tectonic slices, and the lowermost of them, corresponding to the most area of the quarry, is tectonically overturned. White, white-greenish and white-pinkish crinoidal limestones of the Smolegowa Limestone Formation are of Bajocian age (Kalentschenko et al., 1965). These are the youngest deposits of the lowermost part of the quarry, being represented by crinoidal grainstones, typical of the formation. Their thickness is unknown but the outcrop shows about 15-20 meters. In the central part of eastern face of the quarry, the stromatolite-bearing zone occurs, and it may be traced over a distance of 20-30 meters. The stromatolite structures appear about 10 meters above the base of the Smolegowa Limestone Formation. The largest (max. 1.2 m high, and 20 m long) flat lens-shaped mud-mounds occur within the stratigraphically lower part of this zone. Several small mounds occur higher and the size of individual structures does not here exceed 1-2 m laterally and about 0.15-0.50 m vertically. They have flat bases, but very irregular upper surfaces. The first stromatolite cavities filled with radial fibrous calcite appear about 1-5 cm above the base of such mounds; they are the largest and join laterally. Generally, size of stromatolite cavities diminishes upwards, where they also become isolated. The stromatolite levels are intercalated with thin (10-30 cm thick) crinoidal debris levels, and the contacts between them are very sharp. Brachiopods occur abundantly within some mud-mounds, and probably represent autochthonous assemblages as indicated by their taphonomic analysis. It should be noted that the geopetal structures found in brachiopod shells are concordant with stratification as indicated by orientation of stromatolite cavities.

Veliky (Bolshoy) Kamenets

This quarry, worked for ammonitico rosso and so-called Neresnitsa "marbles", lies on a top of a hill between the Vulkhovchik and Luzhanka rivers near Novoselica village. It was described by Andrusov (1945), Slavin (1966) and Rakůs (1990) and mentioned also by Lomize (1968) and Miščik (1992), and it exposes about 40 meters of Middle Jurassic to lowermost Cretaceous limestones. The beds are inclined steeply toward the south (62° S). The lowest strata exposed are crinoidal limestones with abundant micritic matrix up to 4.3 m in thickness. The upper boundary of the crinoidal limestone unit is an omission surface coated with ferromanganese crusts. Overlying deposits are red nodular limestones about 7 m in thickness.

The stromatolite structures are recognized within the whole crinoidal limestone unit, and in the lowermost part of the overlying nodular limestones. In the latter, the stromatolite structures occur within a flat very large mud-mound traced over a distance of 40 meters, and up to 1.80 m in thickness. This mud-mound shows several flat lateral offshoots, and interfingers with typical red nodular limestones. Some smaller mud-mounds from 2 - 5 m in length, and up to 0.3 m in thickness are recognized in slightly younger strata, directly above the large mud-mound. The stromatolite cavities show the presence of radial fibrous calcite and/or are filled with internal sediment.

In thin-section, lowermost part of the nodular limestones shows dominant occurrence of filaments, and thus it represents the "filamentous" microfacies. Still younger nodular limestones in the Veliky Kamenets section are devoid of stromatolite mud-mounds but are rich in the planktonic foraminifera *Globigerina*. The part of the Veliky Kamenets succession with stromatolite mud-mounds, i.e., crinoidal limestones and the lowermost part of the nodular limestones, yielded ammonites of Bajocian-Bathonian age (cf. also Rakůs, 1990).

Petrography of the stromatolite cavities and their relationship to the host rocks

So far, some petrographic data are available only from the Slavnićke Podhore, Štepinká skala, Babiná localities, and from the Veliky Kamenets.

The wall-rocks are mostly micritic to pelmicritic mudstones, wackestones to packstones with a fauna of pelecypods, brachiopods, ammonites, crinoids etc. The microfacies is strongly dependent on the age, i.e., the Bajocian-Bathonian skeletal limestones at Slavnićke Podhore locality are formed by crinoid ooids, the Bathonian-Callovian mudstones of Slavnićke Podhore and Babiná contain "filamentous" microfacies which consists of the thin-shelled bivalve *Bositra buchi*, the Oxfordian mudstones of Štepinká skala are dominated by the planktonic foraminifera *Globigerina* sp. and tiny gastropods and the Kimmeridgian to Lower Tithonian micritic limestones of Babiná contain numerous ooids of the planktonic crinoid *Saccocoma* sp. All the mentioned occurrences contain networks of stromatolite cavities. At Slavnićke Podhore, Priborzhavskoe and Veliky Kamenets they occur as low as the underlying Bajocian crinoidal limestones. These sites were thus pre-disposed to be the sites of mud-mound growth even before the change from skeletal to mudstone deposition. At Štepinká skala, the isolated stromatolite cavities occur as low as the Bathonian nodular limestones. The stromatolite cavities with flat bottoms and digitate roofs are...
common but they form only a part of the cavities; the rest is represented by irregular anastomosing cavities which are, nonetheless, undoubtedly genetically related to the true stromatolites. The cavities are invariably filled by radiaxial fibrous calcite (RFC), then sometimes by internal sediment (mostly sterile micrite) and, finally, by clear blocky calcite. The latter is most probably of fresh-water meteoric origin as some microstalactitic growth forms were observed under CL. Some fillings were even incomplete, with empty voids in the centres. In two instances, at the Babiná and Slavnická Podhorie localities, tests of the ostracode *Pokornyopsis* sp. were found (Pl. I, Fig. 8), surrounded by the last stages of the RFC. These ostracodes were cave-dwellers, indicating that stromatolites cavities at least for a time, formed open-space networks, through which these ostracodes and their larvae could migrate. Except for stromatolites cavities, in all the petrographically examined sites, there are numerous examples of apparent recrystalization. Although there are numerous examples of the RFC filling being separated from the host rock by microstylolites or by shell fragments (shelter porosity), more common are cases where RFC penetration to the host rock occurred via small short-bladed initial stages which locally evolved into the long bladed ones. Penetrating into the host rock, the RFC encloses patches of matrix and isolated allochems (Pl. I, Fig. 5-8; Pl. II, Fig. 7-8). This penetration typically gives the stromatolites voids their characteristic irregularly digitate roofs (Pl. II, Fig. 6; Pl. III, Fig. 7) but in our petrographically examined material this penetration was commonly very strong and resulted even in larger spar-supported portions of the rocks. However, this penetration is only apparent, because the RFC crystals are invariably oriented perpendicular to the substrate (Pl. I, Fig. 6). In some rare instances, the allochems also seem to be affected by recrystalization (e.g. etched crinoidal ossicles overgrown by RFC). Some allochems apparently formed barriers to RFC growth. All these facts show that not all the allochems served as nucleation sites for the seeming "recrystalization". In Štepnická skala samples, some cavities display molds of aragonite shells of various organisms that were initially coated with Fe-Mn oxides, then dissolved and filled with micrite. Afterwards, they were enclosed in the RFC-filling of the stromatolite cavity (Pl. II, Fig. 7-8). Micrite fill of the molds may serve as an indicator of the former precursor of the RFC.

Discussion

These newly discovered stromatolites mud-mound sites can contribute to the long disputed origin of stromatolites cavities. The unexpected occurrences of these cavities in the crinoidal limestones support a biological, rather than a purely physical or chemical origin. Any of the inorganic models of stromatolites origin so far presented is hardly applicable to the wall rock sediment formed by crinoidal skeletal detritus. Most of those models rely on some internal erosion or excavation of unbound muddy sediment. However, it is difficult to remove the sediment and form the cavities in deposits consisting of skeletal particles (crinoidal ossicles).

There is a major problem of the projection of the allochems into the stromatolite voids and even enclosure of the allochems in the spar ("floating" allochems). The RFC crystals are invariably oriented perpendicular to the substrate whether it is a cavity wall or an enclosed allochem. Therefore, the spar crystals could not grow from the centre of the cavity outward, as proposed by Black (1952) and Ross et al. (1975), because later they would not be able to re-orient themselves perpendicular to the allochems they meet on their way (Bathurst, 1977). In the samples we have studied, the explanation of Bathurst (l.c.) that the "floating"allochems are interconnected in three dimensions not visible in a single thin-section, seems unlikely. In many cases the "floating"allochems are smaller than the surrounding RFC crystals and also than the average distances between the allochems. The same was observed in perpendicular-made thin-sections in sparry portions of the samples studied. There was very little possibility of any allochems being supported by being attached to other allochems. There is a conflict between empty cavities in the rock (internal sediment, cave-dwelling ostracodes *Pokornyopsis* sp. etc.) and seeming "recrystalization" evidently related to the same RFC filling the cavities. An alternative explanation of the "recrystalization" may be that the allochems served as nucleation sites on which the crystals started to grow.

A dispute may arise about the nature of the matter that initially supported the "floating" allochems. The instances where the RFC encloses the molds of former aragonite shells filled with micrite (Pl. II, Fig. 7-8) indicate that in some cases the RFC might originate via true recrystalization of the mud. However, in most cases, the patches of micritic host-rocks enveloped by the RFC had to be different from the surrounding and supporting matrix. There is no obvious reason why the RFC crystals would start their growth perpendicular on some micrite patches if they were surrounded by the same mud. The most likely origin of "recrystalization" is that the radiaxial fibrous calcite must have replaced some other substance which may be of organic origin. Most likely, the RFC crystals
(either short- or long-bladed) of the "recrystal-
ization" spar grew at the expense of decaying
microbial mucilage. The mucus might enclose
peloids, allochems or whole mudstone patches
which, in this sense, really "float" in the cavity
space and served as nucleation sites for RFC.
The entire mud-mound most probably represents
a microbially bound autochthonous micrite and
the stromatpect and stromatactoids cavities
originated where only mucilage occurred,
relatively free of sediment. The morphological
variability of stromatpect, penetration of the
sparry calcite into narrow spaces, and enclosing of the "float"
of allochems and mudstone matrix
patches by sparry calcite, are the common
features that are in favour of the presence of
mucus produced by a disorganized assemblage
of various protozoans, rather than by sponges
and other well organized metazoan organisms
which by filtering would prevent allochems from
entering their growth cavities. Moreover, sponge
spicules and skeletons only represent subor-
dinate elements of these mud-mounds.

Conclusions

1. Five new occurrences of Mid - Late
Jurassic stromatpect mud-mounds have been
discovered in the Czorsztyn Unit of the Pieniny
Klippen Belt (Western Carpathians): Slavnické
Podhorie, Štepinká skala, Babiná,
Priborhavskoe and Veliky Kamenets. These are
among the youngest examples of stromatpect
mounds.

2. In addition to mudstones, the stromatpect
cavities also occur in crinoidal limestones. This
suggests a biological origin of them.

3. Many cases of apparent recrystalization
are observed. Rather than being replacements
of carbonate mud, they are interpreted as spar
growing at the expense of decaying microbial
mucilage.

Acknowledgements

Our special thanks belong to the reviewer Prof.
Robert Riding (Cardiff University) for his critical
comments and language corrections of the
English text that considerably improved the
manuscript. This paper is a contribution to the
project KBN 6 P04D 022 21 awarded by the
Polish State Committee for Scientific Research. R.
A. and J. S. also acknowledge financial support
from the project "Tectogenesis of the West
Carpathian sedimentary basins" managed by the
Geological Survey of Slovak Republic and grant
No. 1/6169/99 of VEGA agency.

References

Andrusov, D. 1945: Geological investigations of the
inner Klippen Belt in the Western Carpathians. Part
IV - Stratigraphy of Dogger and Malm, Part V-
Stratigraphy of the Cretaceous. Práce Státného
Aubrechet, R., Mišik, M. & Šykora, M. 1997: Jurassic
synrift sedimentation on the Czorsztyn Swell of
the Pieniny Klippen Belt in Western Slovakia.
ALEWECa symposium, Sept. 1997, Introductory
articles to the excursion, p. 53-64, Bratislava.
Aubrechet, R. & Túnyi, I. 2001: Original orientation of
neptunian dykes in the Pieniny Klippen Belt
(Western Carpathians); p. 96-1st results.
Contributions to Geophysics and Geodesy, 31/3,
557-578, Bratislava.
Bathurst, R.G.C. 1977: Ordovician Meikiejohn
bioherm, Nevada. Geol. Mag., 114, p. 308-311,
Cambridge.
Bathurst, R.G.C. 1982: Genesis of stromatpect
cavities between submarine crusts in Paleozoic
carbonate mud buildups. Journal of the Geological
Belka, Z. 1994: Devonian carbonate mud buildups of
the Central Sahara and their relation to submune
mud mounds of the eastern Anti-Atlas (Morocco),
and their relation to submarine hydrothermal
368-377, Tulsa.
Bernet-Rollande, M.C., Maurin, A.F. & Monty, C.L.V.
1981: De la bactérie au réservoir carbonaté.
-Pétroles et Techniques, 283, p. 96-1st results.
Birkenmajer, K. 1977: Jurassic and Cretaceous
lithostратigraphic units of the Pieniny Klippen Belt,
Carpathians, Poland. Studia Geologica Polonica,
45, p. 1-158, Kraków.
Birkenmajer, K. 1986: Stages of structural evolution of
the Pieniny Klippen Belt, Carpathians. Studia
Geologica Polonica, 88, p. 7-32, Kraków.
Birkenmajer, K. 1988: Exotic Andrusov Ridge: its role
in plate-tectonic evolution of the West Carpathian
Foldbelt. Studia Geologica Polonica, 91, p.
7-37, Kraków.
Black, W.W. 1952: The origin of the supposed tufa
bands in Carboniferous reef limestones. Geological
Bourque, P.A. & Bouivain, F. 1993: A model for the
origin and petrogenesis of the red stromatpect
limestone of Paleozoic carbonate mounds. Journal of
Sedimentary Petrology, 63/4, p. 607-619, Tulsa.
constructed stromatpect mud-mounds. Silurian of
Gaspé,Québec - reply. Journal of Sedimentary
Petrology, 56/3, p. 481-483, Tulsa.
Bridges, P.H. & Chapman, A.J. 1988: The anatomy of a
depth water mud-mound complex to the
southwest of the Dinantian platform in Derbyshire,
UK. Sedimentology, 35, p. 139-162, Oxford.
Camoin, G. & Maurin, A-F. 1988: Rôles des micro-
organismes (bactérie, cyanobactérie) dans la
gênese de "Mud Mounds". Exemples du Turonien
des Jebels Biréno et Mhila (Tunisie). Compte

9

Dunham, R.J. 1969: Early vadose silt in Towsend mound (reef), New Mexico. - In: Friedman, G.M. (ed.): Depositional environments in carbonate rocks - a symposium. SEPM special publication 14, p. 139-191, Tulsa.

Matsyszkiewicz, J. 1997: Stromatolites cavities and stromatolicts-like cavities in the Upper Jurassic carbonate buildups at Mlyńka and Zabierzów (Oxfordian, southern Poland). Annales Societatis Geologorum Poloniae, 67/1, p. 45-55, Kraków.

Mazzullo, S.J., Bischoff, W.D. & Lobitzer, H. 1990: Diagenesis of radialis fibrous calcite in a
Jurassic stromatolites mud-mounds in the Pieniny Klippen Belt

Wetzel, A. & Allia, V. 2000: The significance of hiatus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland. Journal of Sedimentary Research, 70/1, p. 170-180, Tulsa.

Wierzbowski, A. 1994: Late Middle Jurassic to earliest Cretaceous stratigraphy and microfacies of the Czorsztyn Succession in the Spisz area, Pieniny Klippen Belt, Poland. Acta Geologica Polonica, 44/3-4, p. 223-249, Warszawa.

PLATES

Plate I
Slavnické Podhorie
Fig. 1 - Overall view of the Slavnické Podhorie klappe. Section studied marked by arrow.
Fig. 2 - Spar-filled stromatolitic cavities revealed by weathering (40 cm stick for scale).
Fig. 3 - Detail of Fig. 2.
Fig. 4 - Polished slab of mudstone with interconnected stromatolitic cavities. Scale in centimetres.
Fig. 5 - Negative photo of thin section showing a cavity filled with radiatrix fibrous calcite (RFC, pale grey) and blocky calcite (dark grey). The RFC penetrates the wall rock and encloses allochons and micrite patches (both white).
Fig. 6 - SEM photo of etched slab, showing perpendicular spar blades growing on a small allochem.
Fig. 7 - Small cluster of peloids enclosed in RFC. Plane polarized light.
Fig. 8 - Test of cave-dwelling ostracode Pokomyopsis sp. (top center), quartz grain (top left), together with some micritized allochons, all enclosed in RFC. Plane polarized light.

Plate II
Štepnická skala
Fig. 1 - South facing photo of the quarry wall, showing the margins of flat stromatolitic mud-mounds. Note the wedging-out bedding planes (arrows).
Fig. 2 - View to north of the same flat mound. Arrows indicate wedging-out bedding planes.
Fig. 3 - Stromatolitic cavities in outcrop (tectonically overturned position). Photographed when wet.
Fig. 4 - Hand specimen from the Ammonitico Rosso-type limestone (lowermost Bathonian) with stromatolitic-like cavity. Number of the sample indicates the meter-level in the section.
Fig. 5 - Polished slab of the stromatolitic cavity filled with multiphase RFC (white) and internal sediment (dark grey).
Fig. 6 - Microphoto showing a digitate promontory of spar-filled stromatolitic cavity roofed by mudstone.
Fig. 7 - Molds of aragonite shells of various organisms, coated with Fe-Mn oxides, dissolved and filled with micrite. Afterwards, they were enclosed in the RFC filling of the stromatolitic cavity. Micrite fill of the molds indicate that in this case, carbonate mud might have surrounded the allochons instead of microbial mucus. RFC then originated by a true mud replacement. Plane polarized light.
Fig. 8 - Similar to Fig. 7. Ammonite shell in the middle. Plane polarized light.

Plate III
Babiná
Fig. 1 - Overall view of the Babiná Quarry.
Fig. 2 - Right (SE) part of the quarry. The dashed lines indicate the Bathonian-Lower Tithonian section with stromatolitic cavities.
Fig. 3 - Field photo of stromatolitic cavities in Kimmeridgian mudstone (tectonically overturned).
Fig. 4 - Polished slab from the base of the section (Bathonian-Callovian) showing small-scale anastomosing stromatolitic-like cavities. Centimeter scale below.
Fig. 5 - Polished slab of the mudstone with isolated small-scale stromatolites from the Kimmeridgian-Lower Tithonian part of the section.
Fig. 6 - Polished slab from the highest level with stromatolitic-like cavities (Lower Tithonian).
Fig. 7 - Digitate protrusion of the stromatolitic cavity roof into the mudstone. Note the Saccocoma ossicles in the micrite, indicating Kimmeridgian-Lower Tithonian age.

Plate IV
Veľký Kamenets and Priborzhashvskoe
Fig. 1 - Small mud-mound in the Ammonitico Rosso limestone at Veľký Kamenets.
Fig. 2 - Detail of the mud-mound showing numerous stromatolitic cavities at Veľký Kamenets.
Fig. 3 - Fragment of mud-mound in crinoidal limestone of the Smolegova Limestone Fm. at Priborzhashvskoe.
Fig. 4 - Detail of the mud-mound showing numerous stromatolitic cavities filled with fibrous calcite and internal sediment at Priborzhashvskoe.