Zatlakovič M., Hodasová K. & Krčmář D., 2021: Solute transport by groundwater – a comparison of computation methods sensitivity to physical-chemical parameters and source geometry. Acta Geologica Slovaca, 13, 1, 95–106.
Solute transport by groundwater – a comparison of computation methods sensitivity to physical-chemical parameters and source geometry
Martin Zatlakovič, Kamila Hodasová & Dávid Krčmář
Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; martin.zatlakovic@uniba.sk
Abstract
The presented comparative study evaluates the sensitivity of selected computational procedures to chosen parameters of solute transport and source geometry in homogeneous conditions. The computation procedures include three numerical schemes with FDI (finite difference implicit), MOC (method of characteristics), and a TVD (total variation diminishing) advection solver, while the other terms of the governing equation are computed by the FDI method. Furthermore, two analytical solutions were used: the exact solution of Newille (2005) and the approximate solution of Domenico (1987). Finally, a simplified, so-called Step-method, which is still being used in the practice, was used. The sensitivities of the individual procedures to selected physical-chemical parameters and to the geometric characteristics of the solute source were evaluated and compared. The obtained results show considerable differences between the particular procedures used. In most test cases, the numerical procedures with a TVD and MOC advection solver produced higher concentrations and were more sensitive to the transport parameters in comparison with the other methods used. Applied variations of individual parameter values caused a change of the calculated solute concentrations up to 7.1 %, whereas the substitution of calculation methods caused up to 7.7 % of C0 (the concentration in solute source). The simultaneous changes of all the examined parameter values with a synergistic effect caused the maximal change of calculated concentration up to 15.3 % of C0. A significant effect of the solute source geometry on the match between the results obtained by the selected numerical and analytical methods was also found (difference up to 57.9 % of C0). The achieved results indicate a need to solve the solute transport in homogeneous conditions using both types of calculation methods, the numerical and analytical, in order to cover possible variability of resulting concentrations. The simplified Step-method predominantly yields the lowest concentrations. At the same time, it is the least sensitive procedure to the selected parameters and can be used only for a reference point situated on the plume centerline. From a cautious point of view, it is the least suitable method for solute transport modelling among the compared methods.
Key words: solute transport, analytical model, numerical model, transport parameters, method sensitivity
Manuskript doručený: 2021-02-15
Manuskript revidovaný: 2021-05-25
Informácie
Pripravované články
AGEOS 2024, roč. 16, č. 2
- Hyžný M. & Mihálik D.: Decapod crustacean assemblage from the middle Miocene (Badenian) of the Oslip sand pit, Austria (Eisenstadt-Sopron Basin)
- Lačný A., Vojtko R., Dušeková L. & Čahojová L.: Dolines as important indicators of lithology and tectonics: A case study of the Malé Karpaty Mts. (Western Carpathians)
- Dugovič R. & Malík P.: Drought hazard assessment using GIS Comparison of groundwater runoff of three different hydrogeological units in the Western Carpathians determined by Kille’s and hydrograph separation methods
- Tornyai R. & Koudelka D.: Utilisation of airborne laser scanning data in landslide hazard assessment – case study Čadca district, Slovakia
- Bláha P., Niyazov R., Abdullaev S., Motorniy I. & Lazecký M.: Human-induced landslides in the Angren coal district, Uzbekistan
Archív
- AGEOS 2024, roč. 16, č. 2
- AGEOS 2024, roč. 16, č. 1
- AGEOS 2023, roč. 15, č. 2
- AGEOS 2023, roč. 15, č. 1
- AGEOS 2022, roč. 14, č. 2
- AGEOS 2022, roč. 14, č. 1
- AGEOS 2021, roč. 13, č. 2
- AGEOS 2021, roč. 13, č. 1
- AGEOS 2020, roč. 12, č. 2
- AGEOS 2020, roč. 12, č. 1
- AGEOS 2019, roč. 11, č. 2
- AGEOS 2019, roč. 11, č. 1
- AGEOS 2018, roč. 10, č. 2
- AGEOS 2018, roč. 10, č. 1
- AGEOS 2017, roč. 9, č. 2
- AGEOS 2017, roč. 9, č. 1
- AGEOS 2016, roč. 8, č. 2
- AGEOS 2016, roč. 8, č. 1
- AGEOS 2015, roč. 7, č. 2
- AGEOS 2015, roč. 7, č. 1
- AGEOS 2014, roč. 6, č. 2
- AGEOS 2014, roč. 6, č. 1
- AGEOS 2013, roč. 5, č. 2
- AGEOS 2013, roč. 5, č. 1
- AGEOS 2012, monografia
- AGEOS 2012, roč. 4, č. 2
- AGEOS 2012, roč. 4, č. 1
- AGEOS 2011, roč. 3, č. 2
- AGEOS 2011, roč. 3, č. 1
- AGEOS 2010, roč. 2, č. 2
- AGEOS 2010, roč. 2, č. 1
- AGEOS 2009, roč. 1, č. 2
- AGEOS 2009, roč. 1, č. 1
- AGEOS 2009, monografia